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1 Motivating Examples for Algebraic Models of Computation

Question 1.1 What is the least numbétn) of multiplications to calculate Xfrom given X?

Let Ib(n) := [log,(n+ 1) ] denote the length af's binary expansion and;sin(n) the number of
1sinit.

upper bound(n) < lb(n) —2+#; bin(n) < 2log,(n): by induction

lower bound/(n) > [log,n] = Ib(n— 1) since deg< 2°

upper boundvith division: #'(n) < lb(n+ 1) — 1+ #; bin(n)/2 < %’ -log,n
logn

improved upper bound(n) < log,(n) + O(W): see Exercises

improved lower bound(n) > log,n-+ 0.3 log, (#; bin(n)):

Lemmal2. Letkh:=0F:=1 FRo:=Fy1+F, yi=(1+ \/5)/2 ~ 1.62
a) fn=(Y"—(-Y)™")/v5 Fas<2:¥.

b) Consider an optimal sequence of multiplicatiops=F Ty, - T,, 1 < k < K :=¢(n), where
To := X and0 < ki, ko < k. W.l.o.g. supposeedTy < degTk,1 and write G:= {k : degTx =
2dedly_; } for thegiant stepsB := {k: degTy < 2degli_1} for thebaby steps
Then# bin(n) < 2”8 and n= deg Tx) < 27¢.y*8: induction and examplgg| b| b|

c) £(n) =K =#G+#B> (log,n—#B-log,y) + #B, wherel —log,y > 0.3

See [1, XERCISE 1.6].

Question 1.3 Fix a polynomial fe C[X]. What is the least numbé( f) of arithmetic opera-
tions (additions/subtractions, multiplications) thatapute {x) from given x and some complex
constants?

e upper bound(f) <2ded f)—1: Horner
e lower bound/(f) > [log,(degf)]
e improved upper bound f) <deq f)+ |deg f)/2]+2 (Knuth 1962):

LetF denote a field and = z‘j’:Oa,—Xj € F[X] a polynomial of degred. Suppose that(Y) :=

> 2j+1<d orzHle is either constant or a product of linear factorsFijY]. Then there exists a
straight-line program computingyin F[X] from X andX? and some elements frofusing at
most|d/2| + 1 multiplications andi additions/subtractions: .

Write h(Y) = (Y —&) - ha(Y) andg(Y) = (Y — &) - 91(Y) +n whereg(Y) := Y 2j<q 02; Y.

Then f(X) = g(X?)+X-h(X?) = (X2-&)- (ga(X?) +X-hi(X?) + n can be calculated
from X, X2,&,n,91(X?) 4+ X - hy(X?) using 1 multiplication and 2 additions/subtractions.

Reminder 1.4 (Asymptotic growth) Fix f,g: N — N.

e fc0O(g) <« Ilimsup,f(n)/g(n) <o
e feco(g) <« limsup,f(n)/g(n)=0
e fcQ(g) <« limsup,f(n)/g(n)>0
(Hardy-Littlewood semanticapt Knuth’s strongetiminfy, f(n) /g(n) > 0)



e feO(g) <& O0<liminf,f(n)/g(n) <limsup, f(n)/g(n) <o

Question 1.5 (Polynomial Multiplication) What is (the asymptotic growth of) the least number
M(n) of arithmetic operations to produce (the coefficient lidtmfg from given (coefficient lists
of any) polynomials jm ofdeq p),degq) <n?

e upper boundn—+1) - (n+2) — 1: high-school method
e lower bound 2+ 1
e upper bound)(n'°%3) C O(n158%): Karatsuba

(@a+b-x")-(c+d-x") = u4v-X"+w-x°",
where u:=a-c,w:=b-d, vi=(a+b)-(c+d)—u—w

henceM(2n) < 3-M(n) +4 andM(2¥) < 3¢ T(1) +4- 3=L,
e upper bound)(n'*¢) for any fixeds > 0: Exercises
e upper bound(n-logn) overC using FFT

Question 1.6 (Matrix Multiplication) What is (the asymptotic growth of) the least number of
arithmetic operations to produce-8 from given nx n—matrices?

e upper bound &2
e lower boundn?
e upper bound(n'°%7) C 9(n?81):
ForA= (Aj),B= (Bij) € R?*?it holdsA-B = C where

C11 =M1+ Mg — M5+ Mz, Ci2=M3+Ms,
Co1 = Mz + Mgy, Coo =M1 —Mo+M3z+ Mg

M1 = (A12+A22) - (B11+B22), Mz:= (Ax1+A2) By,
Mz:= A1 (B12—Bz1), Msg:=Az2- (B21—B11), Ms:= (A11+A12) B2,
Mg := (A21—A11) - (B11+Bi12), M7= (A12—Az2) - (Ba1+Bz)
e upper bound(n>373): world record,de Gall ar Xi v: 1401. 7714
Definition 1.7 (Straight-Line Program).

a) LetS = (S, (i), (fj )) denote a structure with constantsS and (possibly partial) functions
fj :C S% — S of arities g € N. AStraight-Line Prograr® (over the signature of this structure
and in variables X ..., Xp) is a finite sequence of assignmentsZc and 4 := X, (1 </ <
n) and 4 := fj(Zkl,...,Zkaj), 1<ky,...,ky <Kk.

b) When assigned values,x..,x, € S to X, ..., X,, the programcomputes (the set of results
consisting of(x1,...,Xn) =: X and of) 4,...,Zx; the final result is & =: P(X). However if
any intermediate operation (Z, , . . .,Zkaj) happens to be undefined, then so {E§)P= L.

c) Acost function C assigns to each; some cost Cfj) > 0. The cost of a straight-line program
P is the sum of the costs of thedccurring. Theength|P| of P means its cost with respect
to constant cost function; £ 1.

d) The (straight-linegomplexity Cc(F) of a familyd of functions f:C S — S with respect to
a cost function C is the least cost of a straight-line progfamvers. computing?.



2 Examples of (Almost) Tight Complexity Bounds

2.1 Nonscalar Cost of Polynomial Multiplication: Interpolation and Dimension Bound

In Karatsuba’'s Algorithm and its generalizations, the Itasgymptotic cost is governed by the
number of multiplications of the smaller polynomials; seei€ise 1. So we now investigate the
complexity of polynomial multiplication when charging gniultiplications among the coeffi-
cient algebra while additions and scaling by constantsansidered free.

Theorem 2.1. Fix someF—-algebraA with binary addition+ : A x A — A and unary scalings
xc: A >a— c-ae A by constants ¢ from the infinite field

a) There is a straight-line program ovér:= (A, (), (+, xc: ¢ € F)) which, for arbitrary but
fixed distinctx, ..., x, € Fand oninputofy,...,y, € A, calculates (the uniquepa. .., a, 1 €
Awithypda-xE=y foré=1,...,n.

b) Consider the algebrd :=F[Ao,...,An,Bo,...,Bm/inn+m+2variables A, ... An, By, . .. Bm.
The sef 5. j_,Ai-Bj:0<¢<n+m} can be calculated fromd. .., Bm_1 by a straight-line
program overs using i+ m+ 1 operations “x” (and arbitrary many “+” and * x.").

c) Forxg,...,Xxn,VY1,...,Ym € A consider théf—vector spaces %= {A1Xg+---+AnXn A € F}
and Y:= {fuy1 +--- +Hmym : Hj € F}. Then any straight-line program ovércomputing
{y1,...,ym} from(xq,...,xn) contains at leastlimg (X +Y +F) — dimy(X + ) algebra mul-
tiplications “ x”.

d) The straight-line program from Item b) is optimal!

See [1, HEOREM2.2].

2.2 Discrete Fourier Transform: Cooley—Tukey FFT and Morgenstern’s Volume Bound

Consider theéN-dimensional discrete Fourier-transform

N—1 :
Fn:CN 3 (x0,..., %N 1) — (Zézo exp(2ri -k-£/N) ~x4)k:07m7,\17l e CN .
Theorem 2.2. Fix C > 1 and consider the structu := (C,C, (+, x, : |A| <C)) wherex :

C > z+— c-z€ C denotes unary complex multiplication by constants c of rusdat most C.

a) For N=2", F\ can be computed by a straight-line program o8erof lengthO(N - logN).
b) Consider a straight-line program P ov8g¢ in N variables.

Each ‘line’ ¢ of P computes an affine linear functign: CN — C;

and P computes an affine linear mdp : CN 5 X+ Ap-X+b e CN*IP,

where|P| denotes the length of P and the first N components are thetygent
c) Fora,...,dm < C" with m> n write

A(dy,...,8n) := max{|detd;,,...,dj,)|: 1< j1,...,jn<m} .
Then, forl <k,¢ <mandA € C with |A| > 1, it holds

A@y,....8n A &) < [N-A@y....8n) and A(Ey,...,8m 8+ 8) < 20, ....8n) .



d) The homogeneous linear map AC" — CN*IP| from b) satisfied(Ap) < (2C)/P.
e) Subject to scaling by/+/N, the matrix( exp(2ri - k- £/N)) is unitary

and therefore has determinant of absolute valOEN

0<k, (<N

See [6,88] and [1, p.10].
The straight-line program from Item a) is thus optimal up twastant factor!

2.3 Nonuniform Polynomial Evaluation: Transcendence Degre

Consider fieldd C E and recall thagy, ..., e, € E are calledalgebraically dependent (ovéf)
iff there exists a non-zero polynomigle F[Xy,...,X] with p(es,...,e,) = 0. (For example,
{v2n+ 1,1t} is algebraically dependent ov@r) A setkE C E is algebraicallyindependent (over
IF) iff no finite subset of it is algebraically dependent. By dgfon, trdeg:(E) is the largest
cardinality of any subset d algebraically independent (ovEj.

Fact 2.3 a) Any two maximal algebraically independent subse’'®Bf E (overF)
have the same cardinality: exchange lemma + Zorn’s Lemma.
b) E is algebraic overfF iff trdeg:(E)= 0.
c) mand e are transcendental. In particuledegy { v 2+ 1,1} = 1.
It is unknown whetheftt e} is algebraically independent ové).
d) Ifx1,...,Xq € A are linearly independent ovép,
thenexp(x),...,exp(xq) € C are algebraically independent ov€r. Lindemann—Weierstrald
e) It holdstrdeg; (F(Xy,...,Xn)) =n,
whereF (Xy,...,Xn) denotes the field of rational functions in n variables oler
f) ForF C E C D fields, it holdgrdeg:(D) = trdeg:(E) + trdeg; (D).
In particular trdeg (E(x)) < trdeg:(E) + 1 for x € D.
g) There exist uncountable subsetRadlgebraically independent ovép.

Theorem 2.4 (Motzkin’'55+Belaga’61l).Let F C E denote fields of characteristic 0 aril C
E(X) a finite set of rational functions in indeterminat€sy, ..., X,) = X. For p;,qj € E[X]
coprime ovei and ¢ monic (meaning at least one monomial has coefficient 1), @lefin

Coeffr(p1/ds,-- -, Pm/Adm) € E as the field oveF generated by the coefficients from p., qm.

a) Coeffy(F) is well-defined and coincides with the field extengdi¢f f (%) : X € F", f € F}).
b) For aj,bj,cj,w; € E[X] with bj # 0, Coeffy(w; +cj-aj/bj : j) C Coeffz(wj,cj,aj,bj : j).
c) Consider the structur® = (E,IE‘, (E,+, x, +)) . Any straight-line program computirtgover
8’ contains at leastrdeg; ( Coeffr(F)) constants fronit.
d) Consider a straight-line program P ov8r.= (E,E, (+, —, x,+)) computing (intermediate)
results f,..., fn € E(Xg,..., Xn).
i) There exisD # bj,a; € E[X], ¢; € E (j=1,...,N) such that f= ¢; - aj/bj and
trdeg: (Coeffp (a1,..an, b, ..bN)) is at most the number of additions/subtractionsin P.
ii) There exis0 # vj,u;j € E[X], wj € E (j=1,...,N) such that f = w; +u;/v; and
trdeg, (Coeffz (ug, ..., vn)) is at most twice P's number of multiplications/divisions.



e) Any straight-line program computir@ over $ contains at leastrdeg, ( Coeffp(F)) — ||
additions/subtractions an(itrdeg ( Coeffr(F)) — |F]) /2 multiplications/divisions.

See [1, HEOREMS5.1+5.9].
Knuth’s answer to Question 1.3 is thus optimal up to an agklitonstant!

3 Efficient Algorithms for Polynomials

Recall thetotal degree, de@X3-Y?) = 5. LetF[X] 4 denote the vector space of polynomials over
IF of total degree less thah) andF[X]_4 those homogeneous of degrkeMoreover writeF [[X]]
for the algebra of formal power series ovér

3.1 Multivariate Derivatives

Theorem 3.1 (Baur-Strassen)Fix a fieldIF of characteristic 00,1 € C C IF, and let P denote a
straight-line program in n variables over—= (IE‘,C, (+,—, ><,+)) computing fe F(Xy,...,Xn).
Then there exists a straight-line prograrhiR n variables oves of length|P’| < 5-|P| simulta-
neously computing all, D1 f,...,0nf.

See [187.2].

Lemma 3.2 (Taylor and Leibniz). For f € F(Xy,...,Xn) define

N
t0:=f0er, 9= F (O 0nT)(0) Koy Xng/d! € F[Xs, ..., Xn]=q
ng,...ng=1

a) ForfeIF‘[Xl XN ]<D |th0|ds f=y05fd
b) (f-9)9=(f-g)(0)=f0.90cF, (f g)() f1).gO 4 0. g1),

(f g)():f() g()_|_f() g()_|_f() g(), and(fg)(D):zgzof(d)g(D_d)
c) Incase ¢0) #0, u:= /g has Lﬁo =f0/99, oV = (fO -uO®.g1)) /g0,

u®@ — (f(Z) u® . g — )/g 0  anduP) = (f(D)_zgggu(d).g(D—d))/g(O)

Theorem 3.3 (Strassen’73)Let.A denote arf—algebra. Suppos& C F[Xy, ..., Xn]<p can be
computed (on a Zariski-dense subse#i®) by a straight-line program P oveiA, @, +, x, <)
can also be computed by a straight-line program Q qw&re, +, x) of length|Q| < O(D?)-|P|.

See [1§7.1].

3.2 Univariate Polynomial Arithmetic
Abbreviate$’ := (C,C,+, x,+).

Theorem 3.4 (Polynomial Multiplication).



a) The product of two polynomiafs q € C[X], given by their lists of coefficients (dense repre-
sentation), can be computed by a straight-line program &verf lengthO(N - logN),
where N:= deg p) +dedq).

b) The (coefficients of the) product of k given polynomgals. ., px € C[X]_g,
can be computed by a straight-line program o8éof lengthO(N - IogZN), where N:=d k.

See [152.3].

Lemma 3.5. @) p= Y.>0PnX" € F[[X]] has a multiplicative inversg/p € F[[X]] iff po # 0;
in which cas&)= 5 - 0nX" :=1/pis given by g= 1/po and inductively g= — 51,1 Pm-
On—m/ Po.

b) Supposé c F[[X]] satisfiep- =1 (modX"). Thend:=§-(2— p-§) hasp-G=1 (mod X?").

c) Fix polynomialsa= 3" gaX!, b= 3T b;XJ, = i X, andi= 7t r X
witha=b-q+r, where n'=dega) > degb) =: m> dedr). Then

(Zin:oaixn_i)/(ZT:obixm_j) = ZT;OanX”_m_k (mod X"~

d) Forx,...,xy € Fandac F[X],r:=arem(X —xz)--- (X —xn) satisfiesa(X,) = r(xn).

e) Itholdsaremp= (aremp-q) remp.

Theorem 3.6 (Polynomial Division and Multipoint Evaluation).

a) There exists a straight-line program ov&r of lengthO(N - logN) computing, given (the
coefficients of) @ C[X]-n with p(0) # 0, (the coefficients of)/p mod XN,

b) Given (the coefficients of) lac C[X] of N:=dega) > degb) =: M > 1, (the coefficients of)
adiv b and aremb can be computed by a straight-line program o$eof lengthO(N -logN).

c) A straight-line program ove$’ of lengthO(N -log?N) can compute, given (the coefficients
of) pe C[X]«nand x,...,xny € C, the values (1), ..., p(Xn).

d) A straight-line program ove8’ of IengthO(Nd- Iogz(Nd)) can compute, given (the coef-
ficients of) p,...,pN,01,...,08 € C[X]<q @and z,...,zyqg € C with j(z) # 0, the values
St 1< <N,

e) A straight-line program ove§’ of lengthO(N-logN+logM) can compute, given@C[X] N,
pM mod XN.

See [6,59+810.10.1], [1,82.4], and [10, HEOREM 2].



4 Complexity of Matrix Multiplication

4.1 Strassen’s Algorithm

4.2 Complexity and Tensor Rank of Bilinear Maps

4.3 Properties of the Tensor Rank

4.4 Exponent of Matrix Multiplication, LUP-Decomposition, and Inversion

4.5 Multipoint Evaluation of Bivariate Polynomials
5 Branching Complexity

Question 5.1 (Sorting) Given X, ..., X, in a fixed linearly ordered set, how many comparisons
are asymptotically sufficient and necessary to produce anpéationtt: [n] — [n] with Xy 1) <
Xm2) < = Xnn) ?

e upper bouna- (n+1)/2: Bubble Sort
e upper bound(n-logn): Merge Sort
e lower boundQ(log,n!) = O(n-logn):

Definition 5.2 (Decision Tree).LetS = (S, 32) denote a structure wittR a family of relations
R:C Sk of arities &g € N and Z some arbitrary set. Decision Treel (over§ andX and in
variables X, ..., Xy) is an ordered full binary tree with each internal node u |deé by one of
the above relations Rand by an g := ar ~tuple(Xy,, ..., Xy,,) of the variables; while leaves v
are labelled with elements, € .

When assigned valueg,x..,x, € Sto X, ..., X,, T starts at its root and for each internal node
u iteratively proceeds to its left or right child depending Bu(Xy,; - - -, Xu,,)- Upon ending up in
aleaf v it outputs Txy, ..., Xn) := Oy.

5.1 Randomized Polynomial Identity Testing

Definition 5.3. Polynomial Identity Testing is the following decision problem:
Given an expression p composed from variables X, X, and integer constants using addition
+ and multiplicationx; does this p represent the zero function@f/R/C ?

Any such expressiop represents a multivariate integer polynomial; but expagdiinto mono-
mials can blow up its size:

For instance the determinant of a givex n—-matrix A = (g;j) is an n—variate polynomial of
total degreen in A’s entries. Expanded into monomials it consistslaierms (Leibniz Formula)
yet can be evaluated (on a Zariski-dense subsEf'df) in O(n) steps by means of Gaussian
Elimination.

Lemma 5.4 (Schwartz,Zippel).LetF denote a field, & F finite, and pc F[Xy,..., X, a non-
zero polynomial of total degree @ N. Then, for k,...,ry € S chosen independently and uni-
formly from S at random,

Plp(ry,...,rn) =0} < d/|§ .



5.2 Recap on Semi-Algebraic Geometry
Definition 5.5. FixaringF C R and de N.

a) A set A of real solutions to a system of polynomial eqealifoverF) is algebraiqover[F):

{XERd : p1<2):: pk(Y):O}, p17~-'7pk€F[X17"'7Xd]

b) Aconstructibleset is a finite Boolean combination of algebraic sets.
c) A set of solutions to a finite system of polynormakequalities

[RERY: p(N)=...= p(X) =0 A qu(X) > OA... AGy(R) > 0}

with pa,..., Pk, 1, .-, € F[X1,...,Xq] is calledbasic semi-algebraioverTF).

d) A subset oRY semi-algebraids a finite union of basic semi-algebraic ones.

e) Itiscountably semi-algebraic ovErif the union involves countably many members, all being
basic semi-algebraic ovér.

Example 5.6 a) A circle is algebraic oveZ.. A disc is basic semi-algebraic ovér
Every integer polytope is basic semi-algebraic o¥er

b) Every constructible subset Bfis finite or co-finite;
every semi-algebraic subsetfis a finite union of intervals.

c) Every semi-algebraic set is the projection of a consthletset.

Fact 5.7 (Tarski—Seidenberg) The projection of a semi-algebraic set is again semi-algafr

5.3 Recap on Projective Geometry
Definition 5.8. Fix a fieldIF © Q and de N.

a) Projective spac®d(F) is the set{ [V] : 0 +# V € F4+1} of lines through the origin,
where[V] := {AV: A € F} denotes a projective point.

b) The GrassmanniaGry(F%) is the set of k—dimensional linear subspaceBbf
Gr(FY) := U Grk(FY).  (SoGry(Fd+1) =PY(F)...)

c) For (as,...,39)" =B = (by,...,by) € F9k a matrix of full rank, the family of its maximal
minors

Det(spar{B)) = (det(al,...,ak))1§i1<i2<._.<ik§d
is called thePliicker Coordinatesf spar{B) € Gry(F9).

Lemma 5.9. Det : Gf(F9) — P(g)‘l(ﬂ?) is well-defined and injective (but not surjective).

See [17, ROPOSITION14.2].



5.4 Ben-Or’s Lower Bound and Applications
5.5 Range Spaces and their Vapnik-Chervonenkis Dimension
5.6 Fast Point Location in Arrangements of Hyperplanes

5.7 Polynomial-depth Algorithms for NP—complete Problems
6 NP-Completeness over the Reals

A BCSS machinéVl (over R) can in each step add, subtract, multiply, divide, and bramt
the result of comparing two reals. Its memory consists ofrdimite sequence of cells, each
capable of holding a real number and accessed through ax iedester (similar to a one-head
Turing machine). A program faM may store a finite number of real constants. The notions
of decidabilityand semi-decidabilitytranslate straightforwardly from discreteC {0,1}* and

L C N* to real languagek C R*. Computing a functiorf :C R* — R* means that the machine,
givenX € dom(f), outputsf(X) within finitely many steps and terminates while diverging on
inputsX ¢ dom(f).

Example 6.1 a) rank :R™™ — N is uniformly BCSS—computable in tiri¢n® + m?)
b) The graph of the square root function is BCSS—decidable.
c) Qis BCSS semi-decidable; and so is theself algebraic reals.
d) The algebraic degree functialeg :A — N is BCSS—computable.
e) Alanguagd. C R* is BCSS semi-decidable iff
L =rangé f) for some total computable :fR* — R*.
f) The real Halting probleni is not BCSS—decidable, where

H := {(M,%) : BCSS machin®( terminates on inpux}

g) Every discrete language® {0,1}* is BCSS—decidable!
h) The following discrete problems (‘T’EA% and (ii) QUART% can beverifiedin polynomial
time by a BCSS machine without constants:
i) Given (the degrees and coefficients in binary of) a systemuitivariate
polynomial in-/equalities with integer coefficients, datesdmit a real solution?
i) Given a multivariate polynomial of total degree at mostides it admit a real root?

Definition 6.2. LetNﬂDﬂ% denote the family of discrete decision problems of the form
[£€{0,1}":ne N,Fyc RPMV : (R §) € V}

where pe N[N] andV C R* can be decided in polynomial time by a BCSS machine without
constants.

Theorem 6.3. FEAS) andQUARTS, are complete folNP%
(with respect to many-one reduction by a polynomial-timenifumachine).

Fact 6.4 (Grigoriev'88,Canny’88,Heintz&Roy&Solern6’90,Renegar'92)
NP C NPQ C PSPACE.



6.1 Equations over the Cross Product

The cross product i3 is well-known due to its many applications in physics suctoague or
electromagnetism. Mathematically it constitutes the nivagpp

x TR3XR33 ((Vo, Ve, V2), (Wo, Wy, Wa)) — (ViW2 — VoWi, VoW — VgWo, Vowy — VW) € R3 (1)

It is bilinear (thus justifying the name “product”) but acommutativev x W = —w x V and
non-associative and fails the cancellation law:

VXW=UxW # V=0 & WxV=wxUu .

Fact 6.5 a) For linearly independent, w, their cross produci x w=: U is uniquely determined
by the following:u LV, ULw (where “L” denotes orthogonality), the triplet, w, U is right-
handed, and lengths satisfy|| = ||V|| - ||W|| - cosZ(V, W).

In particular, anti-/parallelv, w are mapped t®.

b) Cross products commute with simultaneous orientati@sgnving orthogonal transforma-
tions: For Oc R3*3 with O- O' = id anddetO) = 1 it holds (O - V) x (O-W) = O- (V x W),
where J denotes the transposed matrix.

Definition 6.6. a) Atermt(Vy,...,V,) (over “x”, in variables 4, ..., V,) is
either one of the variables, (ﬁsx t) for terms st (in variables \, ..., Vy).
b) Forvy,...,Vh € R®thevalue t(Vy,...,V,) is defined inductively via Equation (1).
c) Fix a fieldF C Q and recall from Definition 5.8 thak?(F) = { [V] : 0 # V € F3}
denotes the projective plane (o), where[V] := {AV: A € F}.
For distinct[V], (W] € P?(F) (well-)define[V] x [W] := [V x W]; [V] x [V] is undefined.
d) ForatermiVy,...,V,) and V], ..., [Vs] € P?(F), thevalue
t([Va],...,[Vn)) is defined inductively via c), provided all sub-terms arerdzfi

Definition 6.7. a) XNONTRIV03 = {(t(V1,...Vh)) [NEN, TVy,... 0 € F3:t(Vy,...Vy) £0}.
b) XNONTRIV 2 := {(t(V1,...,Vn)) [nEN, IW4], ..., [Vo] € P2(F) :t([V4], ..., [Vn]) defined.
c) XUVEC 2, :_{ vl, Vh)) ]neN Wy, U €F3t(Vy,...,Vn) =& :=(0,0,1)}.
d) XNONEQUIV 0oy = {(S(Va,. .., Vo), t(Va,....Vh)) |

neN, H[Vl] [Vn]EIPZ( ) ([vl],...,[vn])#t([vl],...,[vn]),both sides defindd
€) XSATDs := {(ti(V1,...,Va)) |[n€EN, 3V1,....Vy € F3:t(Vy,...,Vp) = Vq # O}
f) XSAT]%( = (Ve V) [ nEN, 3V, (W] € PA(F) (W), [Vo]) = [Va] }.

Following JOHN VON NEUMANN (who in turn credits KKRL VON STAUDT), express arithmetic
overF as geometric operations @ by identifyingr € F with the line{(;) : x € F}.

Lemma 6.8. Fix a subfieldF of R. LetVy, V», V3 denote an orthgonal basis off3. Then V= TFV;
satisfies Y x Vo = V3, Vo x V3 = V4, and \4 x V1 = V. Moreover abbreviating := F(Vy — Vo)
and \b3 := F(Vp — V3) and 43 := F(V; — V3), we have for 1sc F:

a) F(Vl — FSVZ) = V3 x [F(Vg — I’Vz) X F(Vl — S\_l’g)}



b) F(Vl — S\_l’g) = V2 X [Vzg X F(V]_ — S\_l’z)}

c) F(V3—rvp) = Vp x [V13 x F(Vq — FVZ)]

d) F(V]_ — (r — S)Vz) = V3 X [([Vzg X F(Vl — I’Vz)] X [Vz X F(V]_ — S\_l’g)]) X Vg]

e) iz = Vo x (V17_ ><V23).

f) For W € P?(F), the expressionW) := (W x V3) x (((W x V3) x V3) ><V2) is defined pre-
cisely when W= F(Vy — rv; + svz) for some s= F and a unique re IF; and in this case
(W) = F (V4 —rv). Moreover, if W= F (V1 —rv,) then (W) =W.

Theorem 6.9. a) XNONTRIV 2;, XNONTRIVY,, .., XUVEC %,, andXNONEQUIV Y, ... are
R P2(R) R P2(R)
polytime equivalent t®olynomial Identity Testing (Definition 5.3).
b) XSATRs andXSATD, ) are NPp—complete.

c) Thereis aterm(iVy,...,Vy) s.t.0#£t(Vi,...,Vn) = V1 is satisfiable oveR3 but not overQ?®.

6.2 Satisfiability in Quantum Logic

Definition 6.10. a) For a vector space V, the Grassmann{an (V) is the set of k—dimensional
linear subspaces of V;
Gr(V) :=UGr(V), 1:=V is called (strong) truth, every ¥ 0:= {0} is weakly true.

b) For a finite-dimensional inner product space V, eqGigV ) with the operations

XAY :=XNY, XVY:=X4Y, and-X:=X'={vVveV:vaeX:vlLa} .

c) Alattice term is an expression over variables ardA;
an (ortho)term may in addition involve-.
d) For a term t with variables X..., X, and for an assignmentx ..,x, € Gr(V), thevalue
tv (X1,...,%n) is defined inductively according to b).
We may omit the subscriptV if it is clear from the context.
e) C(X,Y) :=(XAY)V(XA=Y)V(=XAY)V (=XA=Y) is calledcommutator (of X and Y).
f) SATy = {{t(X1,...,Xn)) 1 IX1,..., X € Gr(V) 1 tv(X,...,%Xn) = 1},
saty := {(t(Xg,...,%n)) 1 3IX1,..., X € Gr(V) 1ty (Xa,...,%n) # O}.
g) ForatermiXy,...,X,) and a fieldF C C let

maxdims (t,d) := max{ dim (tga(Xe,...,Xn)) : X1, .., % € Gr(F9)} .

h) A d-diamond inV is a(d+ 1)—tuple Qy,Dy,...,Dq € Gr(V) such thatV=D1&...&Dg =
Do® Dj forall 1 < j <d, whered and® denote orthogonal and direct sum, respectively.

SoSAT = satp: coincides with the classical, Boolean satisfiability pesh|
(t) € SATa < maxdimg(t,d) =d, (t) € satga < maxdimg(t,d) > 0.

Lemma 6.11. a) Gr(V) satisfiedde Morgan’s Rules =(XVY) = (=X)A(=Y) and —(XA
Y) = (=X) Vv (=Y); but Gr(R?) violates the distributive layX VY)AZ = (XAZ) V(Y AZ).



b) Gr(V) satisfies thenodular laws
XCy = XV(YAZ) =yA(XV2Z), X2y = XA(YVZ)=YyVXAZ)
and in particular theorthomodular laws
uCv = uVv(VA-U) =YV, u>v = UA(VV-U)=V

c) Forabe Gr(V)itholds: C(a,b)=1 < a= (avb)A(av—-b) <: aChb.
In particular aCb < —-aCb < bCa.
d) Supposey,ze Gr(V) have Gx,y) = 1=C(X,2).
Then xA (yVz) = (XAY)V (XAz)and Cx,yVz) = 1.
e) Ifx,..., % € Gr(V) satisfy Gx;,Xj) = 1and t(xq,...,Xn) # 0,
then there existy. ..,y € {0,1} with t(y1,...,yn) = 1.
f) For any fieldF C C, if t(Xy,...,X,) admits a weakly/strongly satisfying assignment in
Gr(F?), it also admits one iMOn = {0,1,Q(7),Q(). -, (). (M }-

n

Proposition 6.12. Fix a field F C C and3 < d € N. Let&,,...,& € FY denote a basis and
abbreviate® : F > a+ F(& —ag) € G (FY) and E :=Fgj and Ej :=F(& — §).

a) (F(& —b&) VF(&—a&))A(E1VE) = O(a-b);

b) F(& —ag&) = (F(&—agj) VEjK) A(EiVEK) for pairwise distinctl <i, j,k <d;
c) F(g —ag) = (F(§ —aéj>\/Eik;/\(Ej\/Ek) for pairwise distinctl <1, j,k <d;
d) ([(F(&~b&s) VEx) A (O(a) VEzs)] VEs) N (E1VEz) = O(a—b);

f) For pairwise distinctl <i, j,k<d it holds:\/io':1 Ei=1EAV,4E =0 EjVE;=E VEj,
EijANEj=0,Exk=E«i= (Ei VEK A (Eij \Y, Ejk).

g) Conversely every choice of,Ejj € Gr(F9) satisfying the conditions expressed in f)
arise from a basisie

Theorem 6.13. a) For any fieldF C C, bothSATy2 andsatg. are NP—complete.

b) For every d> 3, SATRr4 andsatps are NPr—complete

c) and so areSAT ¢ andsatgq!

d) There exists a term t that is (weakly/strongly) satiséailerGr(R?) but not overGr(Q?®)
and a term s (weakly/strongly) satisfiable o@n(C?) but not overGr(R3).

Lemma 6.14. a) Forterms §Xy,...,Xn) and t(Y1,...,Ym) it holds
maxdim(sVvt,d) = min{maxdim(s,d) +maxdimt, d),d}.

b) FixV € Gr(W) and a term Xy,...,Xn).
For Xq,..., %, € Gr(V) it holds t/ (Xq, ..., X)) =tw(X1,...,X,) NV. _ _

c) Forterms $Xy,...,X%n) =s(X) and t(Y) abbreviate(sl;) (X,Y) :=s(Xy At(Y),..., Xn At(Y)) A
t(Y). Thenmaxdim(s;,d) = maxdim(s, maxdint,d)).

d) Every d—diamond RDy,...,Dgq € Gr(V), d := dim(V), weakly satisfies the following term
9d(Zo,Z1,.--,Zd) = 9d(2):

ﬁZo/\/\(;l:1 (Zo\/ng(Z_)), where gH(Z_) =Zj /\/\iaﬂépoﬁzi . (2)



e) Ford:=dim(V), every weakly satisfying assignment D1, ...,Dq € Gr(V) of Equation (2)
constitutes a d-diamond.
Moreover, in this case,( (Do, D1, ...,Dq) = D; anddim(gd(Do, D4,.. .,Dd)) =1.

f) If t is weakly satisfiable ove®r(V), there exists some W Gry (V) such that t is weakly
satisfiable oveGr(W), where|t| denotes the syntactic length of t.

Definition 6.15. Call t(X,...,X,) weakly/strongly satisfiable ové&r(F*) if there exists some
d € N and a weakly/strongly satisfying assignment x, x, € Gr(F9).

6.3 Realizability of Oriented Matroids
6.4 Stretchability of Pseudolines
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