Algebraic Complexity Theory

SS 2014, Exercise Sheet #11

EXERCISE 19:

Describe a BCSS machine (over \mathbb{R} without constants) computing,

- a) given $A, B \in \mathbb{R}^{d \times d}$, some $C \in \mathbb{R}^{d \times d}$ with range $(C) = \text{range}(A) \lor \text{range}(B)$.
- c) given $A \in \mathbb{R}^{d \times d}$, some $C \in \mathbb{R}^{d \times d}$ with range $(C) = \neg$ range(A).
- b) given $A, B \in \mathbb{R}^{d \times d}$, some $C \in \mathbb{R}^{d \times d}$ with range $(C) = \text{range}(A) \wedge \text{range}(B)$.

What is the asymptotic running time? Can we replace \mathbb{R} with \mathbb{C} ?

EXERCISE 22:

- a) Suppose $\varphi : V \to W$ is an isomorphism of vector spaces and abbreviate $\varphi[U] := \{\varphi(\vec{u}) : \vec{u} \in U\}$. Show that $\varphi[X \lor Y] = \varphi[X] \lor \varphi[Y]$ and $\varphi[X \land Y] = \varphi[X] \land \varphi[Y]$ for all $X, Y \in Gr(V)$.
- b) Suppose φ is in addition an isometry of inner product spaces. Show that $\varphi[\neg X] = \neg \varphi[X]$.
- c) Every term $t(X_1, \ldots, X_n)$ can be written as $s(X_1, \ldots, X_n, \neg X_1, \ldots, \neg X_n)$ for a lattice term *s*.
- d) Prove: If *t* is strongly satisfiable over Gr(V) and over Gr(W), then *t* is also strongly satisfiable over $Gr(V \times W)$. If *t* is weakly satisfiable over Gr(V) and *V* is a subspace of *W*, then *t* is also weakly satisfiable over Gr(W). Hint: $t_V(x_1, \ldots, x_n) = t_W(x_1, \ldots, x_n) \cap V$ for $x_1, \ldots, x_n \in Gr(V)$.
- e) Show that $x \lor \neg y = 1$ for $x, y \in Gr(V)$ implies $\dim(x) \ge \dim(y)$.
- f) Conclude that the following term h_d of length $O(d^2)$ is strongly satisfiable over Gr(V) iff $d | \dim(V)$:

$$\left(\bigvee_{j=1}^{d} X_{j}\right) \land \left(\bigwedge_{i\neq j} X_{j} \lor \neg X_{i}\right) \land \left(\bigwedge_{j=1}^{d} \neg \left(X_{j} \land \bigvee_{i\neq j} X_{i}\right)\right)$$

and any satisfying assignment $x_1, \ldots, x_n \in Gr(V)$ has $\dim(x_1) = \ldots = \dim(x_n) = \dim(V)/d$.

g) Verify that $D_j := \mathbb{F}\vec{e}_j$ and $D_0 := \neg \mathbb{F}(\vec{e}_1 + \ldots + \vec{e}_d)$ constitute a *d*-diamond (see the script). Prove that any *d*-diamond D_0, D_1, \ldots, D_d has dim $(V) - \dim(D_0) = \dim(D_1) = \ldots = \dim(D_d) = \dim(V)/d$ and weakly satisfies the following term $g_d(Z_0, Z_1, \ldots, Z_d) = g_d(\bar{Z})$:

$$\neg Z_0 \wedge \bigwedge_{j=1}^d (Z_0 \vee g_{d,j}(\bar{Z})), \text{ where } g_{d,j}(\bar{Z}) := Z_j \wedge \bigwedge_{i \neq j > 0} \neg Z_i$$