Algebraic Complexity Theory

SS 2014, Exercise Sheet \#11

EXERCISE 19:

Describe a BCSS machine (over \mathbb{R} without constants) computing,
a) given $A, B \in \mathbb{R}^{d \times d}$, some $C \in \mathbb{R}^{d \times d}$ with range $(C)=\operatorname{range}(A) \vee \operatorname{range}(B)$.
c) given $A \in \mathbb{R}^{d \times d}$, some $C \in \mathbb{R}^{d \times d}$ with range $(C)=\neg \operatorname{range}(A)$.
b) given $A, B \in \mathbb{R}^{d \times d}$, some $C \in \mathbb{R}^{d \times d}$ with range $(C)=\operatorname{range}(A) \wedge \operatorname{range}(B)$.

What is the asymptotic running time? Can we replace \mathbb{R} with \mathbb{C} ?

EXERCISE 22:

a) Suppose $\varphi: V \rightarrow W$ is an isomorphism of vector spaces and abbreviate $\varphi[U]:=\{\varphi(\vec{u}): \vec{u} \in$ $U\}$. Show that $\varphi[X \vee Y]=\varphi[X] \vee \varphi[Y]$ and $\varphi[X \wedge Y]=\varphi[X] \wedge \varphi[Y]$ for all $X, Y \in \operatorname{Gr}(V)$.
b) Suppose φ is in addition an isometry of inner product spaces. Show that $\varphi[\neg X]=\neg \varphi[X]$.
c) Every term $t\left(X_{1}, \ldots, X_{n}\right)$ can be written as $s\left(X_{1}, \ldots, X_{n}, \neg X_{1}, \ldots, \neg X_{n}\right)$ for a lattice term s.
d) Prove: If t is strongly satisfiable over $\operatorname{Gr}(V)$ and over $\operatorname{Gr}(W)$, then t is also strongly satisfiable over $\operatorname{Gr}(V \times W)$. If t is weakly satisfiable over $\operatorname{Gr}(V)$ and V is a subspace of W, then t is also weakly satisfiable over $\operatorname{Gr}(W)$. Hint: $t_{V}\left(x_{1}, \ldots, x_{n}\right)=t_{W}\left(x_{1}, \ldots, x_{n}\right) \cap V$ for $x_{1}, \ldots, x_{n} \in \operatorname{Gr}(V)$.
e) Show that $x \vee \neg y=\mathbf{1}$ for $x, y \in \operatorname{Gr}(V)$ implies $\operatorname{dim}(x) \geq \operatorname{dim}(y)$.
f) Conclude that the following term h_{d} of length $\mathcal{O}\left(d^{2}\right)$ is strongly satisfiable over $\operatorname{Gr}(V)$ iff $d \mid \operatorname{dim}(V)$:

$$
\left(\bigvee_{j=1}^{d} X_{j}\right) \wedge\left(\bigwedge_{i \neq j} X_{j} \vee \neg X_{i}\right) \wedge\left(\bigwedge_{j=1}^{d} \neg\left(X_{j} \wedge \bigvee_{i \neq j} X_{i}\right)\right)
$$

and any satisfying assignment $x_{1}, \ldots, x_{n} \in \operatorname{Gr}(V)$ has $\operatorname{dim}\left(x_{1}\right)=\ldots=\operatorname{dim}\left(x_{n}\right)=\operatorname{dim}(V) / d$.
g) Verify that $D_{j}:=\mathbb{F} \vec{e}_{j}$ and $D_{0}:=\neg \mathbb{F}\left(\vec{e}_{1}+\ldots+\vec{e}_{d}\right)$ constitute a d-diamond (see the script). Prove that any d - $\operatorname{diamond} D_{0}, D_{1}, \ldots, D_{d}$ has $\operatorname{dim}(V)-\operatorname{dim}\left(D_{0}\right)=\operatorname{dim}\left(D_{1}\right)=\ldots=\operatorname{dim}\left(D_{d}\right)=$ $\operatorname{dim}(V) / d$ and weakly satisfies the following term $g_{d}\left(Z_{0}, Z_{1}, \ldots, Z_{d}\right)=g_{d}(\bar{Z})$:

$$
\neg Z_{0} \wedge \bigwedge_{j=1}^{d}\left(Z_{0} \vee g_{d, j}(\bar{Z})\right), \quad \text { where } g_{d, j}(\bar{Z}):=Z_{j} \wedge \bigwedge_{i \neq j>0} \neg Z_{i}
$$

