Algebraic Complexity Theory

SS 2014, Exercise Sheet #10

EXERCISE 19:

For a vector space *V*, the Grassmannian $\operatorname{Gr}_k(V)$ is the set of *k*-dimensional linear subspaces of *V*; $\operatorname{Gr}(V) := \bigcup_k \operatorname{Gr}_k(V), \mathbf{0} := \{\vec{0}\}, \mathbf{1} := V$. Equip $\operatorname{Gr}(V)$ with the operations

 $X \wedge Y := X \cap Y, \quad X \vee Y := X + Y, \text{ and } \neg X := X^{\perp} = \{ \vec{v} \in V : \forall \vec{a} \in X : \vec{v} \perp \vec{a} \}$

supposing *V* comes with an inner product to denote orthogonality \perp .

- a) Show that Gr(V) satisfies the de Morgan rules: $\neg(X \lor Y) = (\neg X) \land (\neg Y)$ and $\neg(X \land Y) = (\neg X) \lor (\neg Y)$.
- b) Show that $Gr(\mathbb{R}^2)$ violates the distributive law: $(X \lor Y) \land Z \neq (X \land Z) \lor (Y \land Z)$. Moreover is satisfies the *disjunction property* for weak truth but not for strong truth:

$$X \lor Y \neq \mathbf{0} \Rightarrow X \neq \mathbf{0} \lor Y \neq \mathbf{0}, \qquad X \lor Y = \mathbf{1} \Rightarrow X = \mathbf{1} \lor Y = \mathbf{1}$$
.

- c) $C(X,Y) := (X \land Y) \lor (X \land \neg Y) \lor (\neg X \land Y) \lor (\neg X \land \neg Y)$ is called the *commutator* of X and Y. Evaluate C(X,Y) on $Gr(\mathbb{F}^1)$ and on $Gr(\mathbb{R}^2)$ — in a systematic way.
- d) Show that for arbitrary $X, Y \in Gr(V)$ it holds $X = Y \Leftrightarrow (X \land Y) \lor (\neg X \land \neg Y) = \mathbf{1}$.

EXERCISE 20:

Describe a BCSS machine (over \mathbb{R} without constants) computing,

- a) given $A, B \in \mathbb{R}^{d \times d}$, some $C \in \mathbb{R}^{d \times d}$ with range $(C) = \text{range}(A) \lor \text{range}(B)$.
- b) given $A, B \in \mathbb{R}^{d \times d}$, some $C \in \mathbb{R}^{d \times d}$ with range $(C) = \text{range}(A) \wedge \text{range}(B)$.
- c) given $A \in \mathbb{R}^{d \times d}$, some $C \in \mathbb{R}^{d \times d}$ with range $(C) = \neg$ range(A).

Can we replace \mathbb{R} with \mathbb{C} ?

EXERCISE 21:

To every $N \in \mathbb{Z}$ there exists a term *t* over $(\times, -, 1)$ of length $O(\log N)$ that over \mathbb{Z} evaluates to *N*.