Algebraic Complexity Theory

SS 2014, Exercise Sheet \#10

EXERCISE 19:

For a vector space V, the Grassmannian $\operatorname{Gr}_{k}(V)$ is the set of k-dimensional linear subspaces of V; $\operatorname{Gr}(V):=\bigcup_{k} \operatorname{Gr}_{k}(V), \mathbf{0}:=\{\overrightarrow{0}\}, \mathbf{1}:=V$. Equip $\operatorname{Gr}(V)$ with the operations

$$
X \wedge Y:=X \cap Y, \quad X \vee Y:=X+Y, \quad \text { and } \neg X:=X^{\perp}=\{\vec{v} \in V: \forall \vec{a} \in X: \vec{v} \perp \vec{a}\}
$$

supposing V comes with an inner product to denote orthogonality \perp.
a) Show that $\operatorname{Gr}(V)$ satisfies the de Morgan rules:

$$
\neg(X \vee Y)=(\neg X) \wedge(\neg Y) \text { and } \quad \neg(X \wedge Y)=(\neg X) \vee(\neg Y)
$$

b) Show that $\operatorname{Gr}\left(\mathbb{R}^{2}\right)$ violates the distributive law: $(X \vee Y) \wedge Z \neq(X \wedge Z) \vee(Y \wedge Z)$.

Moreover is satisfies the disjunction property for weak truth but not for strong truth:

$$
X \vee Y \neq \mathbf{0} \Rightarrow X \neq \mathbf{0} \vee Y \neq \mathbf{0}, \quad X \vee Y=\mathbf{1} \nRightarrow X=\mathbf{1} \vee Y=\mathbf{1} .
$$

c) $C(X, Y):=(X \wedge Y) \vee(X \wedge \neg Y) \vee(\neg X \wedge Y) \vee(\neg X \wedge \neg Y)$ is called the commutator of X and Y. Evaluate $C(X, Y)$ on $\operatorname{Gr}\left(\mathbb{F}^{1}\right)$ and on $\operatorname{Gr}\left(\mathbb{R}^{2}\right)$ - in a systematic way.
d) Show that for arbitrary $X, Y \in \operatorname{Gr}(V)$ it holds $X=Y \Leftrightarrow(X \wedge Y) \vee(\neg X \wedge \neg Y)=\mathbf{1}$.

EXERCISE 20:

Describe a BCSS machine (over \mathbb{R} without constants) computing,
a) given $A, B \in \mathbb{R}^{d \times d}$, some $C \in \mathbb{R}^{d \times d}$ with range $(C)=\operatorname{range}(A) \vee \operatorname{range}(B)$.
b) given $A, B \in \mathbb{R}^{d \times d}$, some $C \in \mathbb{R}^{d \times d}$ with range $(C)=\operatorname{range}(A) \wedge \operatorname{range}(B)$.
c) given $A \in \mathbb{R}^{d \times d}$, some $C \in \mathbb{R}^{d \times d}$ with range $(C)=\neg \operatorname{range}(A)$.

Can we replace \mathbb{R} with \mathbb{C} ?

EXERCISE 21:

To every $N \in \mathbb{Z}$ there exists a term t over $(\times,-, 1)$ of length $\mathcal{O}(\log N)$ that over \mathbb{Z} evaluates to N.

