Algebraic Complexity Theory

SS 2014, Exercise Sheet #9

EXERCISE 17:

Referring to Definition 6.7 in the script:

- a) Prove that XNONTRIV $^{0}_{\mathbb{P}^{2}(\mathbb{R})}$ and XNONTRIV $^{0}_{\mathbb{R}^{3}}$ and XUVEC $^{0}_{\mathbb{R}^{3}}$ are equal as sets.
- b) Construct polynomial-time reductions from XNONEQUIV $^{0}_{\mathbb{P}^{2}(\mathbb{R})}$ to XNONTRIV $^{0}_{\mathbb{R}^{3}}$ and back. (Hint: $[\vec{s}] \neq [\vec{t}] \Leftrightarrow \vec{s} \times \vec{t} \neq \vec{0}$).
- c) Construct a polynomial-time reduction from XNONTRIV $^0_{\mathbb{R}^3}$ to Polynomial Identity Testing.
- d) Verify that $\vec{t}' := (\vec{t} \times \vec{w}) \times ((\vec{t} \times \vec{w}) \times \vec{t})$ is a multiple of \vec{t} for any \vec{w} non-parallel to \vec{t} . Can every multiple of \vec{t} be obtained in this way?
- e) Prove that $\vec{s}' := ((\vec{w} \times (\vec{s} \times \vec{w})) \times \vec{s}) \times (\vec{s} \times (\vec{s} \times \vec{w}))$ is a multiple of \vec{s} ; and every multiple of \vec{s} can be obtained in this way for some appropriate \vec{w} .
- f) Construct a polynomial-time reduction from $XSAT^0_{\mathbb{P}^2(\mathbb{R})}$ to $XSAT^0_{\mathbb{R}^3}$.

EXERCISE 18:

Fix a subfield \mathbb{F} of \mathbb{R} , such as \mathbb{Q} and recall that $\mathbb{P}^2(\mathbb{F}) = \{ [\vec{v}] : \vec{0} \neq \vec{v} \in \mathbb{F}^3 \}$ denotes the projective space over \mathbb{F}^3 , where $[\vec{v}] := \{\lambda \vec{v} : \lambda \in \mathbb{F}\}$. To $A, B, C \in \mathbb{P}^2(\mathbb{F})$ consider

$$V_{12} := B \quad V_2 := (A \times B) \times A \quad V_{23} := C \times A \quad V_1 := V_2 \times V_{23} \quad V_3 := (V_{23} \times (B \times V_2)) \times B \quad (1)$$

a) The evaluation of these terms may be undefined for some assignments of *A*, *B*, *C*. Verify that, on the other hand, $A := [\vec{v}_1]$, $B := [\vec{v}_2 - \vec{v}_1]$ and $C := [\vec{v}_2 + \vec{v}_3]$, do evaluate — namely to

$$V_1 = [\vec{v}_1], \quad V_2 = [\vec{v}_2], \quad V_3 = [\vec{v}_3], \quad V_{12} = [\vec{v}_1 - \vec{v}_2], \quad V_{23} = [\vec{v}_2 - \vec{v}_3]$$

— for any choice of pairwise orthogonal non-zero $\vec{v}_1, \vec{v}_2, \vec{v}_3 \in \mathbb{F}^3$.

b) Conversely when all quantities in Equation (1) are defined, then $V_1 = A$ and there exists a right-handed (!) orthogonal basis $\vec{v}_1, \vec{v}_2, \vec{v}_3$ of \mathbb{F}^3 such that $V_j = [\vec{v}_j]$ and $V_{12} = [\vec{v}_1 - \vec{v}_2]$ and $V_{23} = [\vec{v}_2 - \vec{v}_3]$.