Algebraic Complexity Theory

SS 2014, Exercise Sheet \#9

EXERCISE 17:

Referring to Definition 6.7 in the script:
a) Prove that XNONTRIV $_{\mathbb{P}^{2}(\mathbb{R})}^{0}$ and XNONTRIV $_{\mathbb{R}^{3}}^{0}$ and XUVEC $_{\mathbb{R}^{3}}^{0}$ are equal as sets.
b) Construct polynomial-time reductions from XNONEQUIV $\mathbb{P}_{\mathbb{P}^{2}(\mathbb{R})}^{0}$ to XNONTRIV $_{\mathbb{R}^{3}}^{0}$ and back. (Hint: $[\vec{s}] \neq[\vec{t}] \Leftrightarrow \vec{s} \times \vec{t} \neq \overrightarrow{0}$).
c) Construct a polynomial-time reduction from XNONTRIV \mathbb{R}^{3} to Polynomial Identity Testing.
d) Verify that $\vec{t}^{\prime}:=(\vec{t} \times \vec{w}) \times((\vec{t} \times \vec{w}) \times \vec{t})$ is a multiple of \vec{t} for any \vec{w} non-parallel to \vec{t}. Can every multiple of \vec{t} be obtained in this way?
e) Prove that $\vec{s}^{\prime}:=((\vec{w} \times(\vec{s} \times \vec{w})) \times \vec{s}) \times(\vec{s} \times(\vec{s} \times \vec{w}))$ is a multiple of \vec{s}; and every multiple of \vec{s} can be obtained in this way for some appropriate \vec{w}.
f) Construct a polynomial-time reduction from $X S A T_{\mathbb{P}^{2}(\mathbb{R})}^{0}$ to $X S A T_{\mathbb{R}^{3}}^{0}$.

EXERCISE 18:

Fix a subfield \mathbb{F} of \mathbb{R}, such as \mathbb{Q} and recall that $\mathbb{P}^{2}(\mathbb{F})=\left\{[\vec{v}]: \overrightarrow{0} \neq \vec{v} \in \mathbb{F}^{3}\right\}$
denotes the projective space over \mathbb{F}^{3}, where $[\vec{v}]:=\{\lambda \vec{v}: \lambda \in \mathbb{F}\}$. To $A, B, C \in \mathbb{P}^{2}(\mathbb{F})$ consider

$$
\begin{equation*}
V_{12}:=B \quad V_{2}:=(A \times B) \times A \quad V_{23}:=C \times A \quad V_{1}:=V_{2} \times V_{23} \quad V_{3}:=\left(V_{23} \times\left(B \times V_{2}\right)\right) \times B \tag{1}
\end{equation*}
$$

a) The evaluation of these terms may be undefined for some assignments of A, B, C. Verify that, on the other hand, $A:=\left[\vec{v}_{1}\right], B:=\left[\vec{v}_{2}-\vec{v}_{1}\right]$ and $C:=\left[\vec{v}_{2}+\vec{v}_{3}\right]$, do evaluate - namely to

$$
V_{1}=\left[\vec{v}_{1}\right], \quad V_{2}=\left[\vec{v}_{2}\right], \quad V_{3}=\left[\vec{v}_{3}\right], \quad V_{12}=\left[\vec{v}_{1}-\vec{v}_{2}\right], \quad V_{23}=\left[\vec{v}_{2}-\vec{v}_{3}\right]
$$

—for any choice of pairwise orthogonal non-zero $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3} \in \mathbb{F}^{3}$.
b) Conversely when all quantities in Equation (1) are defined, then $V_{1}=A$ and there exists a right-handed (!) orthogonal basis $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ of \mathbb{F}^{3} such that $V_{j}=\left[\vec{v}_{j}\right]$ and $V_{12}=\left[\vec{v}_{1}-\vec{v}_{2}\right]$ and $V_{23}=\left[\vec{v}_{2}-\vec{v}_{3}\right]$.

