Algebraic Complexity Theory

SS 2014, Exercise Sheet #8

EXERCISE 14:

- a) Devise a BCSS machine over \mathbb{R} computing the algebraic degree function deg : $\mathbb{A} \to \mathbb{N}$.
- b) Prove that the closure, interior, and boundary of a semi-algebraic set are again semi-algebraic. (Hint: Tarski–Seidenberg)
- c) Prove that every non-empty semi-algebraic set contains a (componentwise) algebraic point.

EXERCISE 15:

A *perfect matching* in a bipartite graph $G = (U \uplus V, E)$ is a subset $F \subseteq E$ of its edges $E \subseteq U \times V$ such that every vertex $u \in U$ is incident to exactly one edge in F and similarly for every $v \in V$.

a) W.l.o.g. suppose $U = \{1, ..., n\}$ and $V = \{-1, ..., -n\}$. Prove that *G* has a perfect matching iff the following polynomial in n^2 variables $X_{u,v}$, $(u \in U, v \in V)$, is non-zero:

$$\sum_{\sigma \in \mathcal{S}_n} \operatorname{sgn}(\sigma) \cdot \prod_{u=1}^n \left\{ \begin{array}{ll} X_{u,-\sigma(u)} & \text{if } (u,-\sigma(u)) \in E \\ 0 & \text{if } (u,-\sigma(u)) \notin E \end{array} \right.$$

b) Devise and analyze a randomized polynomial-time algorithm for checking whether a given bipartite graph on 2n vertices contains a perfect matching. Try to make it err with probability less than $1/2^n$.

EXERCISE 16:

Recall the 3D cross product and show that the term $((V \times (V \times W)) \times V) \times (V \times W)$ always evaluates to the zero vector.