Algebraic Complexity Theory

SS 2014, Exercise Sheet \#8

EXERCISE 14:

a) Devise a BCSS machine over \mathbb{R} computing the algebraic degree function deg : $\mathbb{A} \rightarrow \mathbb{N}$.
b) Prove that the closure, interior, and boundary of a semi-algebraic set are again semi-algebraic. (Hint: Tarski-Seidenberg)
c) Prove that every non-empty semi-algebraic set contains a (componentwise) algebraic point.

EXERCISE 15:

A perfect matching in a bipartite graph $G=(U \uplus V, E)$ is a subset $F \subseteq E$ of its edges $E \subseteq U \times V$ such that every vertex $u \in U$ is incident to exactly one edge in F and similarly for every $v \in V$.
a) W.l.o.g. suppose $U=\{1, \ldots, n\}$ and $V=\{-1, \ldots,-n\}$. Prove that G has a perfect matching iff the following polynomial in n^{2} variables $X_{u, v},(u \in U, v \in V)$, is non-zero:

$$
\sum_{\sigma \in \mathcal{S}_{n}} \operatorname{sgn}(\sigma) \cdot \prod_{u=1}^{n} \begin{cases}X_{u,-\sigma(u)} & \text { if }(u,-\sigma(u)) \in E \\ 0 & \text { if }(u,-\sigma(u)) \notin E\end{cases}
$$

b) Devise and analyze a randomized polynomial-time algorithm for checking whether a given bipartite graph on $2 n$ vertices contains a perfect matching.
Try to make it err with probability less than $1 / 2^{n}$.

EXERCISE 16:

Recall the 3D cross product and show that the term $((V \times(V \times W)) \times V) \times(V \times W)$ always evaluates to the zero vector.

