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EXERCISE 14:

a) Devise a BCSS machine overR computing the algebraic degree function deg :A→ N.

b) Prove that the closure, interior, and boundary of a semi-algebraic set are again semi-algebraic.
(Hint: Tarski–Seidenberg)

c) Prove that every non-empty semi-algebraic set contains a(componentwise) algebraic point.

EXERCISE 15:
A perfect matching in a bipartite graphG = (U ⊎V,E) is a subsetF ⊆ E of its edgesE ⊆ U ×V
such that every vertexu ∈U is incident to exactly one edge inF and similarly for everyv ∈V .

a) W.l.o.g. supposeU = {1, . . . ,n} andV = {−1, . . . ,−n}. Prove thatG has a perfect matching
iff the following polynomial inn2 variablesXu,v, (u ∈U,v ∈V ), is non-zero:
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b) Devise and analyze a randomized polynomial-time algorithm for checking whether a given
bipartite graph on 2n vertices contains a perfect matching.
Try to make it err with probability less than 1/2n.

EXERCISE 16:
Recall the 3D cross product and show that the term
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evaluates to the zero vector.


