Issued on 2014-06-03 Solutions due: 2014-06-10

Algebraic Complexity Theory

SS 2014, Exercise Sheet #7

EXERCISE 12:

- a) Devise a Boolean term equal (x, y) evaluating to true iff x = y.
- b) Devise a Boolean term $uniq(x_1,...,x_n)$ evaluating to true iff precisely one of $x_1,...,x_n$ is true. How 'long' is uniq asymptotically?
- c) Describe an encoding $\langle \varphi \rangle$ of Boolean terms $\varphi = \varphi(x_1, \dots, x_n)$ over finite binary strings. How long is $\langle \varphi \rangle$ asymptotically, compared to the syntactic length of φ ?
- d) Construct within time polynomial in the (syntactic or binary) length of φ a Boolean term ψ in conjunctive normal form (CNF) with the following property: φ is satisfiable iff ψ is. (Hint: Add variables for the results of all sub-expressions.)
- e) Strengthen (d) to make ψ in 3-CNF.

EXERCISE 13:

Let $\mathbb{F} \subseteq \mathbb{R}$ denote a ring and abbreviate $\vec{X} := (X_1, \dots, X_n)$ and $\vec{Y} := (Y_1, \dots, Y_m)$.

- a) Prove that every constructible subset of \mathbb{R} is finite or co-finite; and that every semi-algebraic subset of \mathbb{R} is a finite union of intervals.
- b) Construct to $p \in \mathbb{F}[\vec{X}]$ some $q \in \mathbb{F}[\vec{X}, \vec{Y}]$ such that $\forall \vec{x} \in \mathbb{R}^n : (p(\vec{x}) \neq 0 \iff \exists \vec{y} \in \mathbb{R}^m : q(\vec{x}, \vec{y}) = 0)$
- c) Construct to $p \in \mathbb{F}[\vec{X}]$ some $q \in \mathbb{F}[\vec{X}, \vec{Y}]$ such that $\forall \vec{x} \in \mathbb{R}^n: \quad \left(p(\vec{x}) \geq 0 \iff \exists \vec{y} \in \mathbb{R}^m: q(\vec{x}, \vec{y}) = 0 \right)$
- d) Construct to $p_1, p_2 \in \mathbb{F}[\vec{X}]$ some $q \in \mathbb{F}[\vec{X}, \vec{Y}]$ such that $\forall \vec{x} \in \mathbb{R}^n : (p_1(\vec{x}) = 0 \land p_2(\vec{x}) = 0 \Leftrightarrow \exists \vec{y} \in \mathbb{R}^m : q(\vec{x}, \vec{y}) = 0)$
- e) Construct to $p_1, p_2 \in \mathbb{F}[\vec{X}]$ some $q \in \mathbb{F}[\vec{X}, \vec{Y}]$ such that $\forall \vec{x} \in \mathbb{R}^n : (p_1(\vec{x}) = 0 \lor p_2(\vec{x}) = 0 \Leftrightarrow \exists \vec{y} \in \mathbb{R}^m : q(\vec{x}, \vec{y}) = 0)$
- f) Let $\varphi(z_1, ..., z_N)$ denote a Boolean combination of in-/equalities on $z_1, ..., z_N \in \mathbb{R}$. Show that, to $p_1, ..., p_N \in \mathbb{F}[\vec{X}]$, there exists some $q \in \mathbb{F}[\vec{X}, \vec{Y}]$ with $\forall \vec{x} \in \mathbb{R}^n : \varphi(p_1(\vec{x}), ..., p_N(\vec{x})) \Leftrightarrow \exists \vec{y} \in \mathbb{R}^m : q(\vec{x}, \vec{y}) = 0$
- g) Construct to $p \in \mathbb{F}[\vec{X}]$ within polynomial time some quadratic $q_1,\ldots,q_m \in \mathbb{F}[\vec{X},\vec{Y}]$ such that $\forall \vec{x} \in \mathbb{R}^n: \quad \left(p(\vec{x}) = 0 \iff \exists \vec{y} \in \mathbb{R}^m: \bigwedge_{k=1}^m q_k(\vec{x},\vec{y}) = 0\right)$
- h) Construct to $p \in \mathbb{F}[\vec{X}]$ within polynomial time some quartic $q \in \mathbb{F}[\vec{X}, \vec{Y}]$ such that $\forall \vec{x} \in \mathbb{R}^n : (p(\vec{x}) = 0 \Leftrightarrow \exists \vec{y} \in \mathbb{R}^m : q(\vec{x}, \vec{y}) = 0)$
- i) Which of (a)–(h) extend from \mathbb{R} to \mathbb{C} ?