Algebraic Complexity Theory

SS 2014, Exercise Sheet #5

EXERCISE 9:

- a) Formulate and prove an extension/generalization of Theorem 3.1 (Baur-Strassen) in the script to the structure $S = (\mathbb{R}, C, (+, -, \times, \div, \exp, \log, \sqrt{)}).$
- b) Let \mathbb{F} denote a field of characteristic 0. Suppose $\det_n :\subseteq \mathbb{F}^{n \times n} \to \mathbb{F}$ can be calculated (on a Zariski dense subset) by some straight-line program P_n over $S = (\mathbb{F}, C, (+, -, \times, \div))$. Conclude that $\operatorname{Inv}_n : \operatorname{GL}(\mathbb{F}, n) \to \operatorname{GL}(\mathbb{F}, n), A \mapsto A^{-1}$ can be calculated (on a Zariski dense subset) by a straight-line program over S of length $\mathcal{O}(|P_n|)$. Hint: Differentiate Laplace's expansion of the determinant.

EXERCISE 10:

Prove the first two claims from Lemma 3.5 in the script:

- a) p∈ F[[X]] has a multiplicative inverse in F[[X]] iff p(0) ≠ 0;
 in which case q := 1/p is given by q₀ = 1/p₀ and inductively q_n = -∑ⁿ_{m=1} p_m · q_{n-m}/p₀.
- b) Suppose $\tilde{q} \in \mathbb{F}[[X]]$ satisfies $p \cdot \tilde{q} \equiv 1 \pmod{X^n}$. Then $\tilde{\tilde{q}} := \tilde{q} \cdot (2 p \cdot \tilde{q}) \cdot p \equiv 1 \pmod{X^{2n}}$; cmp. Exercise 8c).