Algebraic Complexity Theory

SS 2014, Exercise Sheet \#4

EXERCISE 7:

a) Prove the following weakening of Fact 2.3 g) from the script:

There exists an infinite subset of \mathbb{R} algebraically independent over \mathbb{Q}.
b) The Thue-Siegel-Roth Theorem asserts that any irrational algebraic number α cannot be approximated too well in the following sense:
For every $\varepsilon>0$, only finitely many coprime integers p, q satisfy $|\alpha-p / q|<1 / q^{2+\varepsilon}$.
Conclude that $\sum_{n} 2^{-3^{n}}$ is transcendental.

EXERCISE 8:

a) Verify that the N-dimensional discrete Fourier transform \mathcal{F}_{N} satisfies

$$
\mathcal{F}_{N}(\vec{x} * \vec{y})=\left(\mathcal{F}_{N}(\vec{x})\right) \cdot\left(\mathcal{F}_{N}(\vec{y})\right), \quad \text { where } \quad \vec{x} * \vec{y}:=\left(\sum_{\ell=0}^{N-1} x_{\ell} \cdot y_{k-\ell \bmod N}\right)_{0 \leq k<N}
$$

denotes (discrete circular) convolution and "." componentwise multiplication.
b) Describe a straight-line program over $\mathcal{S}_{1}=\left(\mathbb{C}, \mathbb{C},\left(+, \times_{\lambda}:|\lambda| \leq 1\right)\right)$ of length $\mathcal{O}(N \cdot \log N)$ computing the inverse of the N-dimensional discrete Fourier transform, where $N=2^{n}$.
c) Recall Newton's Method for finding a root of the (non-linear) function f by iterating $x \mapsto$ $x-\frac{f(x)}{f^{\prime}(x)}$ and devise an algorithm for approximating the reciprocal $1 / x$ to given $x \neq 0$.

