Algebraic Complexity Theory

SS 2014, Exercise Sheet \#3

EXERCISE 5:

Devise a straight-line program of length $\mathcal{O}(N \cdot \log N)$ computing the N-dimensional discrete Fouriertransform

$$
\mathcal{F}_{N}: \mathbb{C}^{N} \ni\left(x_{0}, \ldots, x_{N-1}\right) \mapsto\left(\sum_{\ell=0}^{N-1} \exp (2 \pi i \cdot k \cdot \ell / N) \cdot x_{\ell}\right)_{k=0, \ldots, N-1} \in \mathbb{C}^{N}
$$

in case $N=3^{n}$.

EXERCISE 6:

Fix infinite fields $\mathbb{F} \subseteq \mathbb{E}$.
a) Let $\mathbb{E}\left[X_{1}, \ldots, X_{n}\right]$ denote the \mathbb{E}-algebra of multivariate polynomials and deg : $\mathbb{E}\left[X_{1}, \ldots, X_{n}\right] \backslash\{0\} \rightarrow \mathbb{N}$ the maximum degree; e.g. $\operatorname{deg}\left(X^{3} \cdot Y^{2}\right)=3$.
Fix $d \in \mathbb{N}$ and some set $X \subseteq \mathbb{F}$ of $\operatorname{Card}(X)=d$. Show that every function $f: X^{n} \rightarrow \mathbb{E}$ can be represented by a unique polynomial $p \in \mathbb{E}\left[X_{1}, \ldots, X_{n}\right]$ of $\operatorname{deg}(p)<d$.
Moreover the coefficients of said p 'live' in the sub-field $\mathbb{F}($ range $f)$ of \mathbb{E}.
b) Let $a, b, u, v \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ denote multivariate polynomials such that both (a, b) and (u, v) are coprime. Suppose the rational functions a / b and u / v are defined and coincide on some non-empty open ${ }^{*}$ subset of \mathbb{R}^{n}. Then there exists $c \in \mathbb{R}$ such that $a=c \cdot u$ and $b=c \cdot v$.
c) Let $a, b \in \mathbb{E}\left[X_{1}, \ldots, X_{n}\right]$ denote coprime multivariate polynomials where b is monic in the sense that some monomial has coefficient 1 . Then the coefficients of a and b 'live' in the field extension $\mathbb{F}\left(\left\{a(\vec{x}) / b(\vec{x}): \vec{x} \in \mathbb{F}^{n}\right\}\right) \subseteq \mathbb{E}$.
d) Let $p=\sum_{j=0}^{d} p_{j} X^{j}$ and $q=X^{d}+\sum_{j=0}^{d-1} q_{j} X^{j}$ denote polynomials over \mathbb{E}.

Devise a straight-line program over $(\mathbb{E}, \mathbb{E},(+,-, \times, \div))$ of length $3 d+\mathcal{O}(1)$ computing the rational function p / q (possibly extended to removable singularities).
Hint: Consider the continued fraction representation of p / q.

[^0]
[^0]: *One may replace \mathbb{R} with \mathbb{F} by understanding open sets with respect to the Zariski Topology

