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EXERCISE 3:
Recall Karatsuba’s Algorithm for polynomial multiplication usingO(nlog23)⊆O(n1.585) arithmetic
operations. Now fix an algebraA over the infinite fieldF.

a) Verify the above identity (*) for any pairwise distinctx0,x1, . . . ,xd ∈ F and arbitaryp0+ p1 ·

X + p2 ·X2,q0+q1 ·X +q2 ·X2 ∈A[X ].

b) Choosex j = j, say, and conclude that two quadratic polynomials overA can me multiplied
using 5 — instead of 9 — multiplications inA (and arbitrary many additions inA as well as
multiplications by constants fromF).

c) Derive an algorithm for multiplying two polynomials overA of degreen usingO(nlog3 5) ⊆
O(n1.465) arithmetic operations and constants fromF.

d) Generalize a) and b) in order to obtain an algorithm multiplying p ∈A[X ] of deg(p)≤ k and
q ∈A[X ] of deg(q)≤ ℓ usingk+ ℓ+1 multiplications inA (and arbitrary many additions in
A as well as multiplications by constants fromF).
Can you identify Karatsuba as a special case?

e) Derive, for any fixedε > 0, an algorithm multiplying two polynomials overA of degree at
mostn usingO(n1+ε) arithmetic operations and constants fromF.

EXERCISE 4:
Formalize the following algorithms as straight-line programs and analyze their costs:

a) Compute the determinant of a given 3×3–matrix using Sarrus’ Rule.

b) Compute the determinant of a givenn×n–matrix using Laplace’s Expansion.

c) Compute the determinant of a givenn×n–matrix using Leibnitz’ Formula.

d) Compute the determinant of a given 3×3–matrix via its LU–decomposition/Gaussian Elimi-
nation.


