Algebraic Complexity Theory

SS 2014, Exercise Sheet \#2

$$
\left(\begin{array}{c}
p_{0} \cdot q_{0} \\
p_{1} \cdot q_{0}+p_{0} \cdot q_{1} \\
p_{2} \cdot q_{0}+p_{1} \cdot q_{1}+p_{0} \cdot q_{2} \\
p_{2} \cdot q_{1}+p_{1} \cdot q_{2} \\
p_{2} \cdot q_{2}
\end{array}\right) \stackrel{(*)}{=}\left(\begin{array}{ccccc}
1 & x_{0} & x_{0}^{2} & x_{0}^{3} & x_{0}^{4} \\
1 & x_{1} & x_{1}^{2} & x_{1}^{3} & x_{1}^{4} \\
1 & x_{2} & x_{2}^{2} & x_{2}^{3} & x_{2}^{4} \\
1 & x_{3} & x_{3}^{2} & x_{3}^{3} & x_{3}^{4} \\
1 & x_{4} & x_{4}^{2} & x_{4}^{3} & x_{4}^{4}
\end{array}\right)^{-1} \cdot\left(\begin{array}{l}
\left(p_{0}+p_{1} \cdot x_{0}+p_{2} \cdot x_{0}^{2}\right) \cdot\left(q_{0}+q_{1} \cdot x_{0}+q_{2} \cdot x_{0}^{2}\right) \\
\left(p_{0}+p_{1} \cdot x_{1}+p_{2} \cdot x_{1}^{2}\right) \cdot\left(q_{0}+q_{1} \cdot x_{1}+q_{2} \cdot x_{1}^{2}\right) \\
\left(p_{0}+p_{1} \cdot x_{2}+p_{2} \cdot x_{2}^{2}\right) \cdot\left(q_{0}+q_{1} \cdot x_{2}+q_{2} \cdot x_{2}^{2}\right) \\
\left(p_{0}+p_{1} \cdot x_{3}+p_{2} \cdot x_{3}^{2}\right) \cdot\left(q_{0}+q_{1} \cdot x_{3}+q_{2} \cdot x_{3}^{2}\right) \\
\left(p_{0}+p_{1} \cdot x_{4}+p_{2} \cdot x_{4}^{2}\right) \cdot\left(q_{0}+q_{1} \cdot x_{4}+q_{2} \cdot x_{4}^{2}\right)
\end{array}\right)
$$

EXERCISE 3:

Recall Karatsuba's Algorithm for polynomial multiplication using $\mathcal{O}\left(n^{\log _{2} 3}\right) \subseteq \mathcal{O}\left(n^{1.585}\right)$ arithmetic operations. Now fix an algebra \mathcal{A} over the infinite field \mathbb{F}.
a) Verify the above identity (${ }^{*}$) for any pairwise distinct $x_{0}, x_{1}, \ldots, x_{d} \in \mathbb{F}$ and arbitary $p_{0}+p_{1}$. $X+p_{2} \cdot X^{2}, q_{0}+q_{1} \cdot X+q_{2} \cdot X^{2} \in \mathcal{A}[X]$.
b) Choose $x_{j}=j$, say, and conclude that two quadratic polynomials over \mathcal{A} can me multiplied using 5 - instead of 9 - multiplications in \mathcal{A} (and arbitrary many additions in \mathcal{A} as well as multiplications by constants from \mathbb{F}).
c) Derive an algorithm for multiplying two polynomials over \mathcal{A} of degree n using $\mathcal{O}\left(n^{\log _{3} 5}\right) \subseteq$ $\mathcal{O}\left(n^{1.465}\right)$ arithmetic operations and constants from \mathbb{F}.
d) Generalize a) and b) in order to obtain an algorithm multiplying $p \in \mathcal{A}[X]$ of $\operatorname{deg}(p) \leq k$ and $q \in \mathcal{A}[X]$ of $\operatorname{deg}(q) \leq \ell$ using $k+\ell+1$ multiplications in \mathcal{A} (and arbitrary many additions in \mathcal{A} as well as multiplications by constants from \mathbb{F}).
Can you identify Karatsuba as a special case?
e) Derive, for any fixed $\varepsilon>0$, an algorithm multiplying two polynomials over \mathcal{A} of degree at most n using $\mathcal{O}\left(n^{1+\varepsilon}\right)$ arithmetic operations and constants from \mathbb{F}.

EXERCISE 4:

Formalize the following algorithms as straight-line programs and analyze their costs:
a) Compute the determinant of a given 3×3-matrix using Sarrus' Rule.
b) Compute the determinant of a given $n \times n$-matrix using Laplace's Expansion.
c) Compute the determinant of a given $n \times n$-matrix using Leibnitz' Formula.
d) Compute the determinant of a given 3×3-matrix via its LU-decomposition/Gaussian Elimination.

