Algebraic Complexity Theory

SS 2014, Exercise Sheet #1

EXERCISE 1:

Investigate the power *d* of asymptotic growth $t(n) \in \Theta(n^d)$ for $t : \mathbb{N} \to \mathbb{R}$ satisfying the following recursion: $t(n) = a \cdot t(\lceil n/b \rceil) + c \cdot n$ for $1 \le b < a \le c$.

EXERCISE 2:

Let $\ell(n)$ denote the number of additions sufficient to produce the number $n \in \mathbb{N}$, starting with 1. We prove $\ell(n) \leq \log_2(n) + O(\frac{\log_2 n}{\log_2 \log_2 n})$ as follows:

- a) Fix $\lambda \approx \log_2 \log_2 n$ to be later chosen exactly. Then all integers $1, \ldots, 2^{\lambda} - 1$ together can be calculated within a total of 2^{λ} additions.
- b) Calculating $a_0 + a_1 \cdot 2^{\lambda} + a_2 \cdot 2^{2\lambda} + \dots + a_d 2^{d \cdot \lambda}$ from a_0, \dots, a_d suffices with $(\lambda + 1) \cdot d$ additions. Hint: Horner
- c) Now choose $d := \lceil \log_2 n/\lambda \rceil$ and $\lambda :\approx \log_2 \log_2 n 2\log_2 \log_2 \log_2 n$.
- d) Describe an algorithm asserting $\ell(2^{16}-1) \leq 19$.

EXERCISE 3:

Devise an algorithm computing the complex polynomial

$$\sqrt{2} \cdot X^6 + i \cdot X^5 + X^4 + (1 - \sqrt{2}) \cdot X^2 - i \cdot X - 2$$

from X and some complex constants using only 5 multiplications and 6 additions.

^{*}Please consider the following poll: http://doodle.com/bbrmh86zqdpe6kus