Algebraic Complexity Theory

SS 2014, Exercise Sheet \#1

EXERCISE 1:

Investigate the power d of asymptotic growth $t(n) \in \Theta\left(n^{d}\right)$ for $t: \mathbb{N} \rightarrow \mathbb{R}$ satisfying the following recursion: $t(n)=a \cdot t(\lceil n / b\rceil)+c \cdot n$ for $1 \leq b<a \leq c$.

EXERCISE 2:

Let $\ell(n)$ denote the number of additions sufficient to produce the number $n \in \mathbb{N}$, starting with 1 . We prove $\ell(n) \leq \log _{2}(n)+\mathcal{O}\left(\frac{\log _{2} n}{\log _{2} \log _{2} n}\right)$ as follows:
a) Fix $\lambda \approx \log _{2} \log _{2} n$ to be later chosen exactly.

Then all integers $1, \ldots, 2^{\lambda}-1$ together can be calculated within a total of 2^{λ} additions.
b) Calculating $a_{0}+a_{1} \cdot 2^{\lambda}+a_{2} \cdot 2^{2 \lambda}+\cdots+a_{d} 2^{d \cdot \lambda}$ from a_{0}, \ldots, a_{d} suffices with $(\lambda+1) \cdot d$ additions. Hint: Horner
c) Now choose $d:=\left\lceil\log _{2} n / \lambda\right\rceil$ and $\lambda: \approx \log _{2} \log _{2} n-2 \log _{2} \log _{2} \log _{2} n$.
d) Describe an algorithm asserting $\ell\left(2^{16}-1\right) \leq 19$.

EXERCISE 3:

Devise an algorithm computing the complex polynomial

$$
\sqrt{2} \cdot X^{6}+i \cdot X^{5}+X^{4}+(1-\sqrt{2}) \cdot X^{2}-i \cdot X-2
$$

from X and some complex constants using only 5 multiplications and 6 additions.

[^0]
[^0]: *Please consider the following poll: http://doodle.com/bbrmh86zqdpe6kus

