Mathematische Grundlagen der Quantenmechanik 3. Übungsblatt

Fachbereich Mathematik
Prof. Dr. Burkhard Kümmerer
Florian Sokoli

Wintersemester 2012/2013 22./29 November 2012

Gruppenübung

Aufgabe G1 (Die Blochsphäre)

Für Vektoren $\xi, \eta \in \mathbb{C}^2$ definieren wir $t_{\xi,\eta} : \mathbb{C}^2 \to \mathbb{C}^2$ durch

$$t_{\xi,\eta}\zeta := \xi\langle \eta, \zeta \rangle$$

Bemerkung: In der Quantenmechanik schreibt man hierfür $|\xi\rangle\langle\eta|$.

- (a) Zeigen Sie, dass durch $t_{\xi,\eta}$ eine lineare Abbildung definiert wird und bestimmen Sie deren Rang in Abhängigkeit von ξ und η .
- (b) Bestimmen Sie eine Matrix $A \in M_{2,2}(\mathbb{C})$ mit $t_{\xi,\eta}\zeta = A\zeta$ für alle $\zeta \in \mathbb{C}^2$ in Abhängigkeit von ξ und η .
- (c) Sei nun $\xi \in \mathbb{C}^2$ ein Einheitsvektor. Zeigen Sie: Für die orthogonale Projektion P_{ξ} auf den von ξ erzeugten eindimensionalen Teilraum $\mathbb{C}\xi$ gilt

$$P_{\xi} = t_{\xi,\xi}$$

Inwiefern ist ξ eindeutig?

(d) Zeigen Sie, dass es für jeden Einheitsvektor $\xi \in \mathbb{C}^2$ eindeutig bestimmte Zahlen $z_1, z_2 \in \mathbb{C}$ mit $|z_1| = |z_2| = 1$ und einen Winkel $\vartheta \in [0, \pi]$ gibt, sodass gilt

$$\xi = \left(\begin{array}{c} z_1 \cos(\vartheta/2) \\ z_2 \sin(\vartheta/2) \end{array} \right) \, .$$

Folgern Sie, dass es zu jeder eindimensionalen orthogonalen Projektion P eindeutig bestimmte Winkel $\vartheta \in [0, \pi]$ und $\varphi \in [0, 2\pi)$ gibt, sodass gilt

$$P = \begin{pmatrix} \cos^2(\vartheta/2) & e^{-i\varphi}\sin(\vartheta/2)\cos(\vartheta/2) \\ e^{i\varphi}\sin(\vartheta/2)\cos(\vartheta/2) & \sin^2(\vartheta/2) \end{pmatrix}.$$

(e) Begründen Sie, dass die Menge der selbstadjungierten 2×2 Matrizen über $\mathbb C$ einen $\mathbb R$ -Vektorraum bilden und zeigen Sie, dass durch $\{\mathbb I, \sigma_x, \sigma_y, \sigma_z\}$ mit

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 $\sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$ $\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

eine Basis desselben gegeben ist.

¹ Zur Definition der Selbstadjungiertheit von Matrizen siehe Aufgabe H1, falls erforderlich.

(f) Stellen Sie nun die Projektion P aus d) in der Form $P=\frac{1}{2}\left(\alpha_1\mathbb{1}+\alpha_x\sigma_x+\alpha_y\sigma_y+\alpha_z\sigma_z\right)$ mit $\alpha_1,\alpha_x,\alpha_y,\alpha_z\in\mathbb{R}$ dar und vereinfachen Sie die Koeffizienten so weit wie möglich.

Hinweis: Verwenden Sie die für $x \in \mathbb{R}$ gültigen Identitäten

$$\cos^2(x) = \frac{1}{2}(1 + \cos(2x)) \quad , \quad \sin(2x) = 2\sin(x)\cos(x)$$

(g) Folgern Sie abschließend, dass es für jede eindimensionale orthogonale Projektion P auf \mathbb{C}^2 genau einen Einheitsvektor $(x,y,z)^T\in\mathbb{R}^3$ gibt, sodass $P=\frac{1}{2}(\mathbb{1}+x\sigma_x+y\sigma_y+z\sigma_z)$. Welchen Projektionen entsprechen die kanonischen Einheitsvektoren e_1,e_2,e_3 bzw. deren Spiegelung am Ursprung?

Bemerkung: Dieses Konzept nennt man die *Blochsphärendarstellung* der eindimensionalen orthogonalen Projektionen auf \mathbb{C}^2 und $(x, y, z)^T$ heißt der zu P gehörige *Blochvektor*. In der Quanteninformationstheorie wird es vielfach zur Beschreibung von Qubits verwendet.

Aufgabe G2 (Flüsse linearer Differentialgleichungen 1. Ordnung mit konstanten Koeffizienten)

Es sei $A \in M_{n,n}(\mathbb{R})$. Dann besitzt das das Anfangswertproblem

$$x'(t) = Ax(t), \quad x(0) = x_0 \in \mathbb{R}^n$$

die eindeutige, globale Lösung

$$x(t) = \varphi_t(x_0), t \in \mathbb{R}$$

 $\min \varphi_t := e^{At} \in M_{n,n}(\mathbb{R}).$

- (a) Zeigen Sie die folgenden Eigenschaften der Familie linearer Abbildungen $(\varphi_t)_{t\in\mathbb{R}}$:
 - $\varphi_0 = \mathrm{Id}_{\mathbb{R}^n}$
 - $\varphi_{s+t} = \varphi_s \circ \varphi_t = \varphi_t \circ \varphi_s \quad \forall s, t \in \mathbb{R}$
 - Für alle $t \in \mathbb{R}$ ist φ_t invertierbar mit ${\varphi_t}^{-1} = \varphi_{-t}$

Insbesondere bildet $(\varphi_t)_{t\in\mathbb{R}}$ eine abelsche Untergruppe von $GL(n,\mathbb{R})$.

(b) Sei $B \subset \mathbb{R}^n$ eine Borel-messbare Menge. Beweisen Sie die für das Lebesgue-Maß λ auf \mathbb{R}^n und alle $t \in \mathbb{R}$ gültige Gleichung

$$\lambda(\varphi_t(B)) = e^{t \cdot \operatorname{tr}(A)} \cdot \lambda(B).$$

Warum existiert $\lambda(\varphi_t(B))$ überhaupt?

Hinweis: Verwenden Sie, dass für eine positive, messbare Funktion $f: \mathbb{R}^n \to \mathbb{R}$ und einen C^1 -Diffeomorphismus $\varphi: \mathbb{R}^n \to \mathbb{R}^n$ die Beziehung

$$\int_{\varphi(\mathbb{R}^n)} f \, d\lambda = \int_{\mathbb{R}^n} f \circ \varphi \cdot |\det(d\varphi)| \, d\lambda \quad (*)$$

gilt. Weiterhin ist eine beliebige messbare Funktion $f: \mathbb{R}^n \to \mathbb{R}$ genau dann integrierbar, wenn $f \circ \varphi \cdot |\det(d\varphi)|$ integrierbar ist und in diesem Fall gilt (*) ebenso.

(c) Beweisen Sie, dass für alle $t \in \mathbb{R}$ durch

$$U_t: L^2(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n), \lambda) \to L^2(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n), \lambda)$$
$$f \mapsto f \circ \varphi_t$$

ein beschränkter linearer Operator definiert wird, welcher $U_{s+t} = U_s U_t = U_t U_s$ für alle $t,s \in \mathbb{R}$ erfüllt.

- (d) Beweisen Sie die Äquivalenz der folgenden Aussagen:
 - i. Das Vektorfeld $V: \mathbb{R}^n \to \mathbb{R}^n$, $x \mapsto Ax$ ist divergenzfrei.
 - ii. Es gilt tr(A) = 0.
 - iii. Der Fluss φ_t ist für das Lebesgue-Maß und alle $t \in \mathbb{R}$ maßerhaltend, d.h.

$$\lambda(\varphi_t(B)) = \lambda(B) \quad \forall B \in \mathcal{B}(\mathbb{R}^n)$$

iv. Der Operator U_t ist für alle $t \in \mathbb{R}$ unitär.

Aufgabe G3 (Positive Funktionale entsprechen positiven Maßen)

Wir betrachten das endliche System $\Omega = \{\omega_1, ..., \omega_n\}$. Ein lineares Funktional φ auf dem Raum der Observablen Abb (Ω, \mathbb{R}) heißt **positiv**, wenn für alle $f \in \text{Abb}(\Omega, \mathbb{R})$ mit $f \geq 0$ auch $\varphi(f) \geq 0$ gilt. Beweisen Sie:

(a) Ist $\Sigma = \mathcal{P}(\Omega)$ und μ ein endliches Maß auf Σ , so definiert

$$Abb(\Omega, \mathbb{R}) \ni f \mapsto \int_{\Omega} f(\omega) \ d\mu(\omega) \in \mathbb{R}$$

ein positives lineares Funktional auf Abb (Ω, \mathbb{R}) .

(b) Für jedes positive, lineare Funktional auf $Abb(\Omega, \mathbb{R})$ existiert genau ein endliches Maß μ_{φ} auf $\Sigma = \mathcal{P}(\Omega)$, sodass

$$\varphi(f) = \int_{\Omega} f(\omega) d\mu_{\varphi}(\omega) \quad \forall f \in Abb(\Omega, \mathbb{R}).$$

Hausübung

Aufgabe H1 (Wiederholung: Adjungierte in der linearen Algebra)

Es seien \mathcal{H}, \mathcal{K} endlichdimensionale, komplexe Vektorräume mit Skalarprodukt (insbesondere also Hilberträume). Wir bezeichnen mit \mathcal{H}' bzw. \mathcal{K}' die Vektorräume der linearen Funktionale auf \mathcal{H} bzw. \mathcal{K} . Beweisen Sie nacheinander die folgenden Aussagen:

- (a) Für $\xi \in \mathcal{H}$ ist die Abbildung $\varphi_{\xi} : \mathcal{H} \to \mathbb{C}$, $\eta \mapsto \langle \xi, \eta \rangle$ ein lineares Funktional auf \mathcal{H} .
- (b) Die Abbildung $\Phi: \mathcal{H} \to \mathcal{H}'$, $\xi \mapsto \varphi_{\xi}$ definiert eine antilineare, injektive Abbildung.
- (c) Für jedes $\psi \in \mathcal{H}'$ existiert ein $\xi \in \mathcal{H}$ mit $\psi = \varphi_{\xi}$. Insbesondere ist die Abbildung Φ ein antilinearer Isomorphismus.

Bemerkung: Dies ist der **Satz von Riesz-Fréchet** im Falle endlichdimensionaler Hilberträume. In der Quantenmechanik benutzt man für Vektoren $\xi \in \mathcal{H}$ die Schreibweise $|\xi\rangle$ ("Ket-Vektor"), während man das zugehörige lineare Funktional φ_{ξ} durch $\langle \xi|$ notiert ("Bra-Vektor").

Sei im Folgenden immer $T:\mathcal{H}\to\mathcal{K}$ eine lineare Abbildung. Für $\eta\in\mathcal{K}$ definiert die Zuordnung $\mathcal{H}\ni\xi\mapsto\langle\eta,T\xi\rangle\in\mathbb{C}$ ein lineares Funktional (klarmachen, falls nötig). Nach dem Satz von Riesz-Fréchet existiert daher genau ein $\zeta\in\mathcal{H}$ mit $\langle\eta,T\xi\rangle=\langle\zeta,\xi\rangle$ für alle $\xi\in\mathcal{H}$. Wir setzen $T^*\eta:=\zeta$.

- (d) Die oben definierte Abbildung $T^*: \mathcal{K} \to \mathcal{H}$ ist linear. Sie heißt die zu T adjungierte Abbildung.
- (e) Gilt für eine lineare Abbildung $S: \mathcal{K} \to \mathcal{H}$ die Gleichung

$$\langle T\xi, \eta \rangle = \langle \xi, S\eta \rangle \quad \forall \xi \in \mathcal{H}, \, \eta \in \mathcal{K}$$

so folgt bereits $S = T^*$. Die Adjungierte ist also durch die obige Gleichung bereits eindeutig bestimmt.

Für eine Matrix A definieren wir deren **adjungierte Matrix** A^* durch Transposition und komponentenweise Konjugation von A, also $A^* := \overline{A}^T$.

(f) Seien $B_1 := \{e_1, ..., e_n\}$ bzw. $B_2 := \{f_1, ..., f_m\}$ Orthonormalbasen von \mathcal{H} bzw. \mathcal{K} . Ist $M_T^{B_1, B_2}$ die darstellende Matrix von T bezüglich B_1, B_2 , so gilt

$$M_{T^*}{}^{B_2,B_1} = (M_T{}^{B_1,B_2})^*$$

T heißt $unit \ddot{a}r^2$, wenn T die Skalarprodukte auf \mathcal{H} bzw. \mathcal{K} erhält, d.h. $\langle T\xi, T\eta \rangle = \langle \xi, \eta \rangle$ für alle $\xi, \eta \in \mathcal{H}$.

(g) Ist T unitär und λ ein Eigenwert von T, so gilt $|\lambda| = 1$. Ferner ist T genau dann unitär, wenn T invertierbar ist mit $T^{-1} = T^*$.

T heißt **selbstadjungiert**, wenn $\mathcal{H} = \mathcal{K}$ und $T = T^*$ gilt.

(h) Ist *T* selbstadjungiert, so sind die Eigenwerte von *T* reell und Eigenvektoren zu verschiedenen Eigenwerten stehen senkrecht aufeinander.

Der Spektralsatz der linearen Algebra besagt:

Ist $T: \mathcal{H} \to \mathcal{H}$ eine selbstadjungierte lineare Abbildung, so existiert eine Orthonormalbasis $B = \{e_1, ..., e_n\}$ von \mathcal{H} bestehend aus Eigenvektoren von T.

(i) Sei $\Omega = \{1,...,n\}$, $\Sigma = \mathcal{P}(\Omega)$ und μ das Zählmaß auf Σ . Für eine Funktion $f \in L^2(\Omega,\Sigma,\mu)$ schreiben wir f = (f(1),...,f(n)). Dann definiert $U:\mathcal{H} \to L^2(\Omega,\Sigma,\mu)$, $\sum_{i=1}^n \alpha_i e_i \mapsto (\alpha_1,...,\alpha_n)$ einen unitären Operator und sind $\lambda_1,...,\lambda_n$ die Eigenwerte von T, so gilt für $g = (\lambda_1,...,\lambda_n)$

$$T=U^*M_gU.$$

Insbesondere sind selbstadjungierte lineare Abbildungen auf endlichdimensionalen Räumen immer unitär äquivalent zu Multiplikationsoperatoren auf einem endlichen Maßraum.

Im allgemeinen bezeichnet man eine lineare Abbildung *U* als unitär, wenn sie isometrisch und bijektiv ist. Im Falle endlichdimensionaler Hilberträume (und nur dann!) ist diese Definition äquivalent zur hier gewählten, welche für diese Aufgabe besser geeignet ist.