

Uniformity Complexity Theory Each circuit C has a fixed number of inputs \rightarrow for deciding $L \subseteq \{0,1\}^*$, consider a family (C_n) $\{1^n : n = \langle M \rangle \text{ for terminating TM } M \}$ undecidable to TM, but decidable by some family of circuits: F. Meyer auf der Heide (1984): knapsack can be decided by circuit family C_p of polynom.size New circuit for each *n*: <u>nonuniform algorithm</u> **Def:** Call family C_n of circuits uniform if some logspace-DTM can, on input 1^{*n*}, output $\langle C_n \rangle$

evaluation on a TM (sorted topologically) in time poly(size)

Circuit vs. Turing Complexity

Can evaluate a given circuit C on a TM in time O(size) once sorted topologically and in space O(*m*+depth): $x_0, x_1, x_2, \ldots, x_{n-1}$ for each gate on level d recursively evaluate its 2 predecessors on levels<d Can simulate a given TM M with input x on a circuit of depth $O(S_{\Lambda n}(|x|)^2)$ **Reachability + Matrix Powering** of size $O(T_M(|\underline{x}|)^2)$: next slide $y_0, y_1, y_2, \dots, y_{m-1}$

size ≈ seq. time, depth ≈ space _n inputs, m outputs

P-completeness Complexity Theory **Reminder:** Every $A \in \mathbf{NL} \subseteq \mathbf{P}$ can be solved in \mathbf{NC}^2 parallel time O(log²n) on polynomial size circuits. $B \in \mathbb{P}$ called \mathbb{P} -hard if $A \leq B$ holds for every $A \in \mathbb{P}$. CircuitVal := { $\langle C, \underline{x} \rangle$: Circuit C evaluates to true on input assignment x } $\in \mathbf{P}$ Theorem: CircuitVal is P-complete. Exercise

P-vollständige Probleme lassen sich vermutlich nicht effizient parallelisieren.

Complexity and Cryptography

A Public-Key System with key-pair (<u>e,d</u>) consists of two functions E = E(e, x) and D = D(d, y)such that $D(\underline{d}, E(e, \underline{x})) = \underline{x}$ holds for all \underline{x} . Call $f: \Sigma^* \rightarrow \Sigma^*$ a one-way function if i) injective and $|\underline{x}|^k \ge |f(\underline{x})| \ge |\underline{x}|^{1/k}$ for some k ii) computable in polynomial time (i.e. $f \in \mathbf{FP}$) \Rightarrow f⁻¹ \in **FNP** iii) but $f^{-1} \notin \mathbf{FP}$ impossible if $\mathbf{P} = \mathbf{NP}!$ (<u>e,x</u>

encrypt with public key <u>e</u>, decrypt with private key <u>d</u>.

One-Way Functions and VP

Definition: Call a NTM <u>unambiguous</u> if, for any input <u>x</u>, it has at most one accepting computation. $P \subseteq VP \subseteq NP$

Complexity Theory

 $\mathbf{VP} = \{$ Ianguages accepted by unambiguous polytime NTMs $\}$

Theorem: $P \neq VP$ iff one-way functions exist. **Proof:** a) For one-way f define $L := \{ (\underline{x}, \underline{y}) \mid \exists \underline{z} \leq \underline{x}: f(\underline{z}) = \underline{y} \}$ Then $L \in \mathbf{VP}$. And $y \rightarrow f^{-1}(y)$ can be evaluated using binary search with polynomially many queries for L: $L \notin \mathbf{P}$ b) Let $L \in \mathbf{VP} \setminus \mathbf{P}$ be decided by unambiguous NTM U. For x an accepting computation of U on y, let f(x) := 1y. For other arguments Call $f: \Sigma^* \rightarrow \Sigma^*$ a one-way function if let f(x) := 0x. injective and $|\underline{x}|^k \ge |f(\underline{x})| \ge |\underline{x}|^{1/k}$ and This is one-way! $f \in \mathbf{FP} \ (\Longrightarrow f^{-1} \in \mathbf{FNP}) \ \text{but} \ f^{-1} \notin \mathbf{FP}$

Issues with Cryptographic Complexity

Definition: Call a NTM unambiguous if, for any input \underline{x} , it has at most one accepting computation. $\mathbf{P} \subseteq \mathbf{VP} \subseteq \mathbf{NP}$

 $\mathbf{VP} = \{$ languages accepted by unambiguous polytime NTMs $\}$

Theorem: $P \neq VP$ iff one-way functions exist.

- It might be $\mathbf{P} = \mathbf{V}\mathbf{P} \neq \mathbf{N}\mathbf{P}$
- No complete problem known for $VP_{<}$
- *worst-case* complexity:

Cannot eff. check whether given NTM is unambiguous

f might be efficiently invertible on many practical inputs

• randomized algorithms are not deterministic yet practical $f: \Sigma^* \to \Sigma^*$ a one-way function if injective and $|\underline{x}|^k \ge |f(\underline{x})| \ge |\underline{x}|^{1/k}$ and $f \in \mathbf{FP} \ (\Rightarrow f^{-1} \notin \mathbf{FNP})$ but $f^{-1} \notin \mathbf{FP}$