
Complexity Theory
Programing Techniques

� Use states to remember a symbol:
� Take Q‘ := Q ∪ (Γ×Q); 

� similarly: remember k symbols, k∈N fixed (!)

� two/three string tape:
� Take Γ' := Γ ∪ (Γ×Γ×X)

� similarly: k-string tape

� subroutine calls

…ybsrxa

…110011

…100101

TMs may be inconveient to program yet are capable

of anything a digital computer can do – and that

even surprisingly fast [Schönhage et.al. 1994]



Complexity TheoryLinear Speed-Up
Why big-Oh notation?

Theorem: Let M be t(n)-time bounded DTM

and k∈N. There exists a (t(n)/k+O(n²))-time 
bounded DTM 'simulating' M.

„Speedup by any constant factor...“

� Proof (sketch): combine c consecutive tape cells
into a single one:  Γ→Γc ;  then:

� combine c original steps into a single one.



Complexity TheoryResource: Space
Let M=(Q,Σ,Γ,δ) denote a DTM.  The length |K| of 

a configuration K = α q β is defined as |α|+|β|

� For w∈Σ* let SM(w) denote the number of tape
cells M 'touches' on input w: SM(w):=max |Ki|, 
where K0,K1,… denotes the (sequence of) 
configurations M attains on w;
possibly SM(w)=∞.

� For n∈N let SM(n):=max{SM(w) | w∈Σ≤n} 
denote the space M uses on inputs of length ≤n; 
SM:N→N space consumption function

� SM(n)≤O(s(n)): M is O(s(n))-space bounded

� DSPACE(s(n)) := { L=L(M) for M

O(s(n))―space bounded DTM}



Complexity TheoryTime versus Space
�Focus often on running time; but:

�„Time is unbounded, memory is not“

�|w| ≤ SM(w) ≤ max {TM(w), |w| } 

�Exercise 5b:  Any DTM M can be simulated

by a DTM N such that TN(w) ≤ 2O(SM(w))

�Theorem [Hopcroft,Paul,Valiant’73]: 
M can be simulated by N where

SN(n) ≤ O(TM(n)/log TM(n))



Complexity Theory

2.3 Classes P and PSPACE

Def: PP := k DTIME(nk)

PSPACEPSPACE := k DSPACE(nk)
1.Superpolynomial growth usually becomes

impractical already for modest input sizes

2.whereas polynomial running times
are usually those tractable in practice.

3. PP is a robust class, arising also from k-tape 

DTMs, register machines or Java programmes

So far only decision problems,
i.e. functions f:Σ*→{0,1}; later (Exercise 7):

Def: Computing functions (FPFP) f:Σ*→Σ*



Complexity Theory
Preliminaries: Graphs and Coding

� A directed graph G=(V,E) is a set V  (elements
called vertices) and  E⊆V×V (set of edges)

� G is undirected if (u,v)∈E ⇔ (v,u)∈E
� Function c:E→� assigning weights to edges.

For input to a Turing machine:

� Encode (G,c) as adjacency matrix A∈�V×V

� A[u,v] := c(i,j)  for (u,v) ∈ E,

� A[u,v] := * for (u,v) ∉ E

� Case directed G: only upper triangular matrix.

� Let 〈G,c〉 denote this coding;  |〈G,c〉| ≥ |V|


