Programing Techniques

- Use states to remember a symbol:
 - Take $Q' := Q \cup (\Gamma \times Q);$
 - similarly: remember k symbols, $k \in \mathbb{N}$ fixed (!)
- two/three string tape:
 - Take $\Gamma' := \Gamma \cup (\Gamma \times \Gamma \times X)$
 - similarly: k-string tape
- subroutine calls

TMs may be inconveient to program yet are capable of anything a digital computer can do – and that even surprisingly fast [Schönhage et.al. 1994]

1	0	1	0	0	1	•••
1	1	0	0	1	1	•••
đ	X	r	ທ	b	У	•••

Linear Speed-Up

Why big-Oh notation?

Theorem: Let \mathcal{M} be t(n)-time bounded DTM and $k \in \mathbb{N}$. There exists a $(t(n)/k+O(n^2))$ -time bounded DTM 'simulating' \mathcal{M} .

"Speedup by any constant factor..."

- Proof (sketch): combine c consecutive tape cells into a single one: $\Gamma \rightarrow \Gamma^c$; then:
- combine c original steps into a single one.

Resource: Space

Let $\mathcal{M} = (Q, \Sigma, \Gamma, \delta)$ denote a DTM. The length |K| of a configuration $K = \underline{\alpha} q \underline{\beta}$ is defined as $|\underline{\alpha}| + |\underline{\beta}|$

- For $\underline{w} \in \Sigma^*$ let $S_{\mathcal{M}}(\underline{w})$ denote the number of tape cells \mathcal{M} 'touches' on input \underline{w} : $S_{\mathcal{M}}(\underline{w})$:=max $|K_i|$, where K_0, K_1, \ldots denotes the (sequence of) configurations \mathcal{M} attains on \underline{w} ; possibly $S_{\mathcal{M}}(\underline{w}) = \infty$.
- For $n \in \mathbb{N}$ let $S_{\mathcal{M}}(n) := \max\{S_{\mathcal{M}}(\underline{w}) \mid \underline{w} \in \Sigma^{\leq n}\}$ denote the space \mathcal{M} uses on inputs of length $\leq n$; $S_{\mathcal{M}}: \mathbb{N} \to \mathbb{N}$ space consumption function
- $S_{\lambda}(n) \leq O(S(n))$: \mathcal{M} is O(S(n))-space bounded
- DSPACE(s(n)) := { L=L(M) for MO(s(n))—space bounded DTM}

Time versus Space

Focus often on running time; but:

Time is unbounded, memory is not

 $|\underline{w}| \leq S_{\mathcal{M}}(\underline{w}) \leq \max \{T_{\mathcal{M}}(\underline{w}), |\underline{w}|\}$

•Exercise 5b: Any DTM \mathcal{M} can be simulated by a DTM \mathcal{N} such that $T_{\mathcal{N}}(\underline{w}) \leq 2^{O(S_{\mathcal{M}}(\underline{w}))}$

•Theorem [Hopcroft,Paul,Valiant'73]: \mathcal{M} can be simulated by \mathcal{N} where $S_{\mathcal{N}}(n) \leq O(T_{\mathcal{M}}(n)/\log T_{\mathcal{M}}(n))$

2.3 Classes P and PSPACE

Def: $\mathbf{P} := \bigcup_{k} \text{DTIME}(n^{k})$ **PSPACE** := $\bigcup_{k} \text{DSPACE}(n^{k})$

- 1.Superpolynomial growth usually becomes impractical already for modest input sizes
- 2.whereas polynomial running times are usually those tractable in practice.
- 3. **P** is a robust class, arising also from k-tape DTMs, register machines or Java programmes
- So far only decision problems, i.e. functions $f: \Sigma^* \rightarrow \{0,1\}$; later (Exercise 7): **Def:** Computing functions (**FP**) $f: \Sigma^* \rightarrow \Sigma^*$

Preliminaries: Graphs and Coding

- A directed graph G=(V,E) is a set V (elements called vertices) and E⊆V×V (set of edges)
- G is undirected if $(u,v) \in E \Leftrightarrow (v,u) \in E$
- Function $c: E \rightarrow \mathbb{N}$ assigning weights to edges.

For input to a Turing machine:

- Encode (G,c) as adjacency matrix $A \in \mathbb{N}^{V \times V}$
 - A[u,v] := c(i,j) for $(u,v) \in E$, • A[u,v] := * for $(u,v) \notin E$
- Case directed G: only upper triangular matrix.
- Let $\langle G, c \rangle$ denote this coding; $|\langle G, c \rangle| \ge |V|$