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cDC |
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B Voraussetzungen: Einfihrung in die Kryptographie

Lehre AnmeldungRegistration: Gber TUCaM (e link)

frihere Semester Lehrinhalte

Studlien- und Abschlussarbeiten In the seminar we will address the topic of SAT-zolving applied to algebraic cryptanalysis . We will start with

Stellenangebote the background on the satisfiakilty problem from the propositional logic. Then we will consider main
approaches used to solve this problem, including the overview of the most known algorithms such as DPLL.

Verdffentlichungen : ; ) : " ;
Conjunctive Mormal Form (CMF), a de fact standard for input to SAT solvers, will be studied together with

Hontakt some examples how different combinatorial problem may be modeled ag an instance of the satisfiability

Intern problem in CHF. Then we switch to algebraic cryptanalysis of symmetric primitives: block and stream ciphers.

Adfter the general overview of the area and methods used there, we will focus on how the problem of
breaking a cipher may be modeled as a satisfiabilty problem. In particular, how one may translate an algebraic
represertation of a cipher to a problem in CHF. Approaches, heuristics, and tricks of the area will be
addressed. As specific examples we will consider stream ciphers Grain and Trivium, block ciphers Keelog,
KTAM-Family, and PRIMT Cipher.
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Reminder: Asymptotics

Complexity Theory

<>

= Landau: For f,g : N— R write
= f=0(g) & AM VYnz=M: f(n)<M-g(n)
 F=Q(g) o IMVYNEM: (n)2g(n)/M Sk
" f=0(g) & [F=0(g) ~ =Q(9g)

= These notions neglect lower order terms

and allow to simplify many expressions

= e.g. 5':n3-27-n2+933:n+2197 = O(n3)

» further examples in the exercises

* fis polynomialy bounded < 3k: f=0(nk)
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Asymptotic Running Times " o

U
Complexity Theory

DARMSTADT

n log,n -10s | n:log n sec| n2 msec n3 psec 2" nsec
10 33sec 33sec 0.1sec 1msec 1msec
100 =~1min 11min 10sec 1sec 40 Mrd. Y
1000 ~1.5min ~3h 17min 17min
10 000 ~2Mmin 1.5 days ~1 day 11 days
100 000 | =2.5min 19 days | 4 months | 32 years

=Running times of some sorting algorithms
= BubbleSort: O(n2) comparisons and copy instr.s
= QuickSort: typically O(n-log n) steps

but O(n?2) in the worst-case

= HeapSort: always at most O(n-log n) operations

= Here: always worst-case considerations!
= w.r.t. input size (e.qg. bit length) =: n - =
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Example Matrix Mddiipbcation: - oo
[F'X 3 rlng (R’_l_,_lolxll)} Complexity Theory
= [nput: entries of matrices A,Be R™"

» Wanted: entries of nxn-matrix C := A+ B

= school: n2inner products a O(n): 0O(n2?),

ﬁﬁﬁﬂ‘lﬁw
Cl,l C1,2 A1,1 A1,2 Bl,Z

Bz,1 Bz,z

asymptotics

_ World record: O(n2-38)
L(I’l ) - 7L( |_I’l / 2—| ) dominated by } [Coppersmith&Winograd'90]
#multiplications

loo.7 More on Jan.11, 2012
L(n) 0(71 %2 ) logz ~2 sl 1n our collogium..,
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Complexity Theory

Models of Computation

»Matrix Multipl. count arithmetic operations

= 2n2 inputs, n2 outputs: Q(n2).

=HeapSort: O(n-log n) operations

=Can improve (asymptotically) ?

*Yes, 1 operation suffices: sort(xy,...,X,)
=Complexity subj.to model of computation:
=mathem. formalization (&idealization)

=which operationen are available
sand at what 'cost' in terms of resources

=resources such as (run) time, memory,
#prozessors (parallel computing)

Here mostly Turing Maschines



Turing Maschine

Alan M. Turing [1937]

= mathematical | N

L

idealization and
abstraction of his
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Theory

Speicherband

é\

|
assistents (so called /
o

,computers™)

= nowadays generally V
accepted als model
for digital computing
machines (PCs)
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determ. 1-tape TM

- 4-tupe| M = (Q, 2, I, 6) ij‘*/ Spei hb\d
= ) finite set of states - e
= with s=initial state (AP 5 I,_j' =
= g, =accept. final state, | .
= g_=reject. final state @§

= > finite input alphabet/o
= with  , >¢ 2 (blank,

—
= [ finite tape alphabet
» where2 C [Tand , 1> &,

=0 :0Q\q, .9 *xI—->QxT x{R,LN}
denotes the transition function




Configuration, Successor, Computation
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Complexity Theory

= M = (Q,2,I,0); M* = { finite sequen.s over I }

Configuration: a g 3, here ,110q;01110°
= (beyond B only s; B does not end on )

one step according to o: direct
successor configuration ag 3 F a' p B

n-th successor configuration

K FT K"

= (indirect) successor configuration K F* K"

M accepts w if there

are a','el™* with sw +* o
aqg.
>

M rejects w if sw F*

qs

q

+

g

Lesekopf

U

[

1

110 ||




%5 TECHNISCHE
E{@“/@ UNIVERSITAT
/A

’J DARMSTADT

Acceptance und Decision -
Complexity Theory

= The language accepted by M is
L(M) :=<{ w: Maccepts w }
= For we L(M), M may enter a closed loop!

= M decides L(M) if it in addition
rejects every we 2*\L.
= | — >* called semi-decidable

if accepted by some TM;

= | called decidable
if decided by some TM.

M accepts w 1if there exists o‘,B‘eI'™ with sw F* o’ g+ [°
M rejects w 1if there exists o',p‘eI'™ with sw +F* o' g-[°
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Some logical considerations ,
Complexity Theory

™ M=(Q,z,I0) with Q,z,I finite sets

and 0 : Q\{q.,q.} XTI - Q@ X T X {R,L,N}
=Renaming states does not really affect the TM
=There are only countably many TMs

=but continuously many Lc>2* (Cantor)

=Each TM semi-decides precisely one Lc2*.

= Almost every Lc2* is not semi-decidable!

= GOdel: truth of arithmetic sentences not (semi-)
decidable; Davis, Robinson, Matiyasevich: Unsolvability
of diophantic equations not semi-decidable

L c X* called semi-decidable if there exists
a TM accepting precisely those w 1n L.
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Complexity Theory
Let M=(Q,Z,I,0) denote a DTM.
= One step is a direct transition between

configurations agf Fa' pf

For weZ* let T,,(w) denote the number of steps
M executes on input w before terminating;
hww):=«< if M does not terminate on w.

For nelN let T7,,(n):=max{Ty(w) | we2="}
denote the (worst case) running time of M on
inputs of length <n;

Tww:IN—N is the running time function of M

T\w(M<sO(t(n)): M called O(t(n))-time bounded
DTIME(t(n)) := { L(M) :
DTM M is O(t(n))—time bounded}
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Example TM for Palindromes . oo

PALIN := { we<{0,1}*: w=w® }
Q:={SlquIqulqulqzllq{;lq+lq—}

-6informally: >{1(1{ofof1|1]1]0]|L|L]

= s: first symbolis ? Then g.

= Otherwise 'remember’ first symbol / in state g,
overwrite with , and skip one cell to the right

= g,;» scan tape to the right for
then skip back by one cell and enter state g,

= g,,: present symbol different from /? —state g.
(over)write , state g, and one cell to the left

= g,: scan left for then right, restart with state s



