

### 

# Complexity Theory

TECHNISCHE UNIVERSITÄT DARMSTADT

Martin Ziegler



#### Sie sind nicht angemeldet D | Anmelden | English



TU Darmstadt » Informatik » Fachgebiet CDC » CDC » Studium und Lehre » Lehre » WS 11\_12 » SAT-Solving in Kryptoanalyse

#### CDC

Personen Forschung

Lehre

#### Seminar: SAT Solving in Kryptoanalyse

| Veranstaltungsform:   | S2                                              |
|-----------------------|-------------------------------------------------|
| Hochschullehrer:      | Dr. Stanislav Bulygin / Prof. Johannes Buchmann |
| Ort / Zeit:           | Do: 14:15-16:00 in S2/02-A313                   |
| Voraussetzungen:      | Einführung in die Kryptographie                 |
| Anmeldung/Registratio | n:über TUCaN (r <mark>∛link</mark> )            |

#### Lehrinhalte

#### Studien- und Abschlussarbeiten

Stellenangebote

Veröffentlichungen

Studium und Lehre

frühere Semester

Kontakt

Intern

### Fachbereich Informatik

In the seminar we will address the topic of SAT-solving applied to algebraic cryptanalysis. We will start with the background on the satisfiability problem from the propositional logic. Then we will consider main approaches used to solve this problem, including the overview of the most known algorithms such as DPLL. Conjunctive Normal Form (CNF), a de fact standard for input to SAT solvers, will be studied together with some examples how different combinatorial problem may be modeled as an instance of the satisfiability problem in CNF. Then we switch to algebraic cryptanalysis of symmetric primitives: block and stream ciphers. After the general overview of the area and methods used there, we will focus on how the problem of breaking a cipher may be modeled as a satisfiability problem. In particular, how one may translate an algebraic representation of a cipher to a problem in CNF. Approaches, heuristics, and tricks of the area will be addressed. As specific examples we will consider stream ciphers Grain and Trivium, block ciphers KeeLoq, KTAN-Family, and PRINTCipher.

## **Reminder: Asymptotics**



- $f=O(g) \iff \exists M \forall n \geq M: f(n) \leq M \cdot g(n)$
- $f=\Omega(g) \iff \exists M \forall n \geq M: f(n) \geq g(n)/M$
- $f = \Theta(g) \iff f = O(g) \land f = \Omega(g)$
- These notions neglect lower order terms and allow to simplify many expressions
- e.g.  $5 \cdot n^3 27 \cdot n^2 + 933 \cdot n + 2197 = \Theta(n^3)$
- further examples in the exercises
- *f* is polynomialy bounded  $\Leftrightarrow \exists k: f = O(n^k)$



## **Asymptotic Running Times**

TECHNISCHE UNIVERSITÄT DARMSTADT

| п       | $\log_2 n \cdot 10s$ | <i>n</i> ·log <i>n</i> sec | n <sup>2</sup> msec | n³ µsec  | 2 <sup>n</sup> nsec |
|---------|----------------------|----------------------------|---------------------|----------|---------------------|
| 10      | 33sec                | 33sec                      | 0.1sec              | 1msec    | 1msec               |
| 100     | ≈1min                | 11min                      | 10sec               | 1sec     | 40 Mrd. Y           |
| 1000    | ≈1.5min              | ≈3h                        | 17min               | 17min    |                     |
| 10 000  | ≈2min                | 1.5 days                   | ≈1 day              | 11 days  |                     |
| 100 000 | ≈2.5min              | 19 days                    | 4 months            | 32 years |                     |

Running times of some sorting algorithms

- BubbleSort: O(n<sup>2</sup>) comparisons and copy instr.s
- QuickSort: typically O(n·log n) steps but O(n<sup>2</sup>) in the worst-case
- HeapSort: always at most O(n·log n) operations
- Here: always worst-case considerations!
  - w.r.t. input size (e.g. bit length) =:  $n \rightarrow \infty$

### Example Matrix **Modilipoic**ation Fix a ring $(R,+,-,0,\times,1)$ **Complexity Theory**



- Wanted: entries of  $n \times n$ -matrix C := A + B
- school:  $n^2$  inner products á O(n):  $O(n^2)$ ,

**Multiplication**  $B_{1,1}$ A<sub>1,1</sub> A<sub>1,2</sub> *B*<sub>1,2</sub>  $C_{1,1} \mid C_{1,2}$ of *n*×*n*-matrices *C*<sub>2,1</sub> | A<sub>2,1</sub>  $B_{2,1}$  $C_{2,2}$ *A*<sub>2,2</sub>  $B_{2,2}$ using

asymptotics

dominated by

7 multiplications

L(n) = 0

+18 additions of  $(n/2) \times (n/2)$ -matrizes

$$L(n) = 7 \cdot L(\lceil n/2 \rceil)$$
 asymptotics  
dominated by  
#multiplications

World record:  $O(n^{2.38})$ [Coppersmith&Winograd'90] More on Jan.11, 2012 in our collogium...

TECHNISCHE LINIVERSITÄT DARMSTADT

## **Models of Computation**



- Matrix Multipl. count arithmetic operations
  - $2n^2$  inputs,  $n^2$  outputs:  $\Omega(n^2)$ .
- HeapSort: O(n·log n) operations
  Can improve (asymptotically) ?
  Yes, 1 operation suffices: sort(x1,...,xn)
- Complexity subj.to model of computation:
- mathem. formalization (&idealization)
   which operationen are available
  - and at what 'cost' in terms of resources
- •resources such as (run) time, memory, #prozessors (parallel computing)

Here mostly Turing Maschines

# **Turing Maschine**

### Alan M. Turing [1937]

- mathematical idealization and abstraction of his assistents (so called *"computers*")
- nowadays generally accepted als model for digital computing machines (PCs)





### **Configuration, Successor, Computation**



- Configuration:  $\underline{\alpha} q \beta$ , here "110  $\mathbf{q}_5 01110$ " • (beyond  $\beta$  only s;  $\beta$  does not end on )
- one step according to  $\delta$ : direct successor configuration  $\alpha q \beta \vdash \alpha' p \beta'$
- *n*-th successor configuration  $K \vdash^n K''$
- (indirect) successor configuration  $K \vdash K''$
- $\mathcal{M}$  accepts <u>w</u> if there  $q_5$ are  $\alpha', \beta' \in \Gamma^*$  with  $s \underline{w} \vdash^* \underline{\alpha'} q_+ \underline{\beta'}$

 $\triangleright$ 

•  $\mathcal{M}$  rejects  $\underline{w}$  if  $\underline{s} \ \underline{w} \ \vdash^* \ \underline{\alpha'} \ q_{-} \ \underline{\beta'}$ 

Lesekopf

0

0

0

Complexity Theory

## **Acceptance und Decision**



- The language accepted by  $\mathcal{M}$  is  $L(\mathcal{M}) := \{ \underline{w} : M \text{ accepts } \underline{w} \}$ 
  - For  $\underline{w} \notin L(M)$ ,  $\mathcal{M}$  may enter a closed loop!
- $\mathcal{M}$  decides  $L(\mathcal{M})$  if it in addition rejects every  $\underline{w} \in \Sigma^* \setminus L$ .
- L ⊆ Σ\* called semi-decidable if accepted by some TM;
- L called decidable if decided by some TM.

*M* accepts  $\underline{w}$  if there exists  $\underline{\alpha}^{\cdot}, \underline{\beta}^{\cdot} \in \Gamma^{*}$  with  $s \underline{w} \vdash^{*} \underline{\alpha}^{\cdot} q + \underline{\beta}^{\cdot}$ *M* rejects  $\underline{w}$  if there exists  $\underline{\alpha}^{\cdot}, \underline{\beta}^{\cdot} \in \Gamma^{*}$  with  $s \underline{w} \vdash^{*} \underline{\alpha}^{\cdot} q - \underline{\beta}^{\cdot}$ 

## Some logical considerations



- TM  $\mathcal{M}=(Q,\Sigma,\Gamma,\delta)$  with  $Q,\Sigma,\Gamma$  finite sets and  $\delta: Q \setminus \{q_+,q_-\} \times \Gamma \to Q \times \Gamma \times \{\mathbb{R},\mathbb{L},\mathbb{N}\}$
- Renaming states does not really affect the TM
- There are only countably many TMs
- •but continuously many  $L \subseteq \Sigma^*$  (Cantor)
- •Each TM semi-decides precisely one  $L \subseteq \Sigma^*$ .
- $\Rightarrow$  Almost every  $L \subseteq \Sigma^*$  is not semi-decidable!
- Gödel: truth of arithmetic sentences not (semi-) decidable; Davis, Robinson, Matiyasevich: Unsolvability of diophantic equations not semi-decidable

 $L \subseteq \Sigma^*$  called semi-decidable if there exists a TM accepting precisely those <u>w</u> in L.

# **Resource: Time**

Let  $\mathcal{M} = (Q, \Sigma, \Gamma, \delta)$  denote a DTM.

- One step is a direct transition between configurations  $\underline{\alpha} q \underline{\beta} \vdash \underline{\alpha} p \underline{\beta}'$
- For  $\underline{w} \in \Sigma^*$  let  $T_{\lambda\lambda}(\underline{w})$  denote the number of steps  $\mathcal{M}$  executes on input <u>w</u> before terminating;  $T_{\lambda\lambda}(\underline{w}) := \infty$  if  $\mathcal{M}$  does not terminate on  $\underline{w}$ .
- For  $n \in \mathbb{N}$  let  $T_{\lambda\lambda}(n) := \max\{T_{\lambda\lambda}(\underline{w}) \mid \underline{w} \in \Sigma^{\leq n}\}$ denote the (worst-case) running time of  $\mathcal{M}$  on inputs of length  $\leq n$ ;

 $T_{\lambda\lambda}:\mathbb{N}\to\mathbb{N}$  is the running time function of  $\mathcal{M}$ 

- $T_{\lambda\lambda}(n) \leq O(t(n))$ :  $\lambda\lambda$  called O(t(n))-time bounded
- **DTIME** $(t(n)) := \{ L(M) :$ DTM  $\mathcal{M}$  is O(t(n))—time bounded}

## **Example TM for Palindromes**



 $\mathsf{PALIN} := \{ \underline{W} \in \{0,1\}^* : \underline{W} = \underline{W}^{\mathbb{R}} \}$ 

- $Q := \{ s, q_{r0}, q_{r1}, q_{z0}, q_{z1}, q_{\ell}, q_{+}, q_{-} \}$
- $\delta$  informally:  $ert b \mid 1 \mid 1 \mid 0 \mid 0 \mid 1 \mid 1 \mid 0 \mid \Box \mid \Box$ 
  - s: first symbol is ? Then  $q_+$
  - Otherwise 'remember' first symbol i in state  $q_{ri}$  overwrite with , and skip one cell to the right
  - *q<sub>ri</sub>*: scan tape to the right for then skip back by one cell and enter state *q<sub>zi</sub>*
  - $q_{zi}$ : present symbol different from *i*? → state  $q_{\perp}$ (over)write , state  $q_{\ell}$  and one cell to the left
  - $q_l$ : scan left for then right, restart with state s