Complexity Theory

WS 2011/2012, Exercise Sheet \#12

EXERCISE 31:

Let $n \in \mathbb{N}$ and $R \subseteq\{0,1\}^{n}$. " $\oplus:\{0,1\}^{2} \rightarrow\{0,1\}$ " denotes exclusive or, that is binary addition modulo 2. For $\vec{x}, \vec{u} \in\{0,1\}^{n}$ write $\vec{x} \oplus \vec{u}:=\left(x_{1} \oplus u_{1}, \ldots, x_{n} \oplus u_{n}\right)$ and $X \oplus \vec{u}:=\{\vec{x} \oplus \vec{u}: \vec{x} \in X\}$. For a proposition $A(\vec{u})$ with parameter $\vec{u}, \operatorname{Pr}_{\vec{u}}[A(\vec{u})]$ denotes the probability that A becomes true for $\vec{u} \in\{0,1\}^{n}$ chosen uniformly componentwise independently at random.
a) Let $\vec{y} \in\{0,1\}^{n}$. Prove: $\vec{y} \in R \oplus \vec{u} \Leftrightarrow \vec{u} \oplus \vec{y} \in R \Leftrightarrow \vec{u} \in R \oplus \vec{y}$.
b) $\operatorname{Pr}_{\vec{u}}[\vec{y} \in R \oplus \vec{u}]=\operatorname{Pr}_{\vec{u}}[\vec{u} \in R]$ and $\operatorname{Pr}_{\vec{u}, \vec{v}}[\vec{y} \in(R \oplus \vec{u}) \cap(R \oplus \vec{v})]=\operatorname{Pr}_{\vec{u}}[\vec{y} \in R \oplus \vec{u}] \cdot \operatorname{Pr}_{\vec{v}}[\vec{y} \in R \oplus \vec{v}]$.
c) Let $1 \leq n \leq p<2^{n}$ and $R \subseteq\{0,1\}^{p}$ with $\operatorname{Card}(R) \leq 2^{-n} \cdot 2^{p}$. Show that no choice of $\vec{t}_{1}, \ldots \vec{t}_{p} \in\{0,1\}^{p}$ satisfies $\{0,1\}^{p}=\bigcup_{i=1}^{p}\left(R \oplus \vec{t}_{1}\right)$.

EXERCISE 32:

a) Show that the following problem lies in $\mathcal{P}^{\text {CliQue }}$, that is, can be decided in polynomial time by a DTM permitted oracle queries to CLIQUE:

Given a graph, does the maximal clique it contains have odd size?
b) Show that the following problem MinCircuit belongs to coNPP ${ }^{\text {Sat }}$:

Given a circuit $C\left(X_{1}, \ldots, X_{n}\right)$, there is no strictly smaller one computing the same Boolean function $\{0,1\}^{n} \rightarrow\{0,1\}$.

Hint: Recall Exercise 9j). How to encode the satisfiability of a circuit into a (not too long) formula?
c) Fix $\ell \in \mathbb{N}$. Prove that the following problem lies in $\mathcal{P}^{\text {SAT }}$. Does it belong to $\mathcal{N P}$? to co $\mathcal{N P}$?

Given a Boolean function φ, can a circuit with at most ℓ gates compute φ ?
d) Let $\mathcal{B}, \mathcal{C} \supseteq \mathcal{P}$ denote classes of languages closed under polynomial-time reduction and suppose C is \mathcal{C}-complete. Then $\mathcal{B}^{\mathcal{C}}=\mathcal{B}^{C}$.
e) Prove $\mathcal{N P} \cup \operatorname{coN} \mathcal{N P} \subseteq \mathcal{P}^{\mathcal{N} \mathcal{P}}$.
f) If $\mathcal{N P} \cup \operatorname{coNP}=\mathcal{P}^{\mathcal{N} \mathcal{P}}$, then $\mathcal{N P}=\operatorname{coNP}$.

Hint: Recall Exercise 15) and consider $L:=(\{0\} \times A) \cup\left(\{1\} \times A^{\complement}\right)$ with $\mathcal{N} \mathcal{P}$-complete $A \notin$ coNP.

EXERCISE 33:

For $k \in \mathbb{N}$, class $\Sigma_{k}^{\mathcal{P}}$ is defined to consist of all problems of the form

$$
\begin{aligned}
&\left\{\vec{x} \in\{0,1\}^{n}: n \in \mathbb{N}, \exists \vec{y}_{1} \in\{0,1\}^{\leq p(n)} \forall \vec{y}_{2} \in\{0,1\}^{\leq p(n)} \exists \vec{y}_{3} \in\{0,1\}^{\leq p(n)}\right. \\
&\left.\cdots Q_{k} \vec{y}_{k} \in\{0,1\}^{\leq p(n)}:\left\langle\vec{x}, \vec{y}_{1}, \ldots, \vec{y}_{k}\right\rangle \in R\right\}
\end{aligned}
$$

with $R \in \mathcal{P}$ and $p \in \mathbb{N}[N]$. Here Q_{k} means ' \forall^{\prime} in case k is even, $Q_{k}=^{\prime} \exists^{\prime}$ if odd.
a) Prove: $\Sigma_{1}^{\mathcal{P}}=\mathcal{N P}$ and $\Sigma_{k}^{\mathcal{P}} \subseteq \mathcal{N}^{\mathcal{P} \mathcal{N P}}{ }^{\mathcal{N P}}$ (tower of height k) and $\Sigma_{k}^{\mathcal{P}} \subseteq$ PSPACE.
b) For $A, B \in \Sigma_{k}^{\mathcal{P}}$, it holds $A \cap B, A \cup B \in \Sigma_{k}^{\mathcal{P}}$.
c) For $L \in \Sigma_{k}^{\mathcal{P}}$ and $q \in \mathbb{N}[N]$, it holds $\quad\left\{\vec{x}: \exists \vec{y} \in\{0,1\}^{\leq q(|\vec{x}|)}:\langle\vec{x}, \vec{y}\rangle \in L\right\} \in \Sigma_{k}^{\mathcal{P}}$.
d) For $L \in \Sigma_{k}^{\mathcal{P}}$ and $q \in \mathbb{N}[N]$, it holds $\quad\{\vec{x}: \forall y \leq q(|\vec{x}|):\langle\vec{x}, y\rangle \in L\} \in \Sigma_{k}^{\mathcal{P}}$.
e) What about $\left\{\vec{x}: \forall \vec{y} \in\{0,1\}^{\leq q(|\vec{x}|)}:\langle\vec{x}, \vec{y}\rangle \in L\right\}$?
f) How will (would) the polynomial hierarchy look like in case $\mathcal{P} \neq \mathcal{N P}=\operatorname{coN} \mathcal{P}$?

Draw and justify. How about the case $\Delta_{2}^{\mathcal{P}} \neq \Sigma_{2}^{\mathcal{P}}=\Pi_{2}^{\mathcal{P}}$?

