Martin Ziegler Carsten Rösnick

Complexity Theory

WS 2011/2012, Exercise Sheet #12

EXERCISE 31:

Let $n \in \mathbb{N}$ and $R \subseteq \{0,1\}^n$. " $\oplus : \{0,1\}^2 \to \{0,1\}$ " denotes *exclusive* or, that is binary addition modulo 2. For $\vec{x}, \vec{u} \in \{0,1\}^n$ write $\vec{x} \oplus \vec{u} := (x_1 \oplus u_1, \dots, x_n \oplus u_n)$ and $X \oplus \vec{u} := \{\vec{x} \oplus \vec{u} : \vec{x} \in X\}$. For a proposition $A(\vec{u})$ with parameter \vec{u} , $\Pr_{\vec{u}}[A(\vec{u})]$ denotes the probability that A becomes true for $\vec{u} \in \{0,1\}^n$ chosen uniformly componentwise independently at random.

- a) Let $\vec{y} \in \{0,1\}^n$. Prove: $\vec{y} \in R \oplus \vec{u} \Leftrightarrow \vec{u} \oplus \vec{y} \in R \Leftrightarrow \vec{u} \in R \oplus \vec{y}$.
- b) $\operatorname{Pr}_{\vec{u}}[\vec{y} \in R \oplus \vec{u}] = \operatorname{Pr}_{\vec{u}}[\vec{u} \in R] \text{ and } \operatorname{Pr}_{\vec{u},\vec{v}}[\vec{y} \in (R \oplus \vec{u}) \cap (R \oplus \vec{v})] = \operatorname{Pr}_{\vec{u}}[\vec{y} \in R \oplus \vec{u}] \cdot \operatorname{Pr}_{\vec{v}}[\vec{y} \in R \oplus \vec{v}].$
- c) Let $1 \le n \le p < 2^n$ and $R \subseteq \{0,1\}^p$ with $\operatorname{Card}(R) \le 2^{-n} \cdot 2^p$. Show that no choice of $\vec{t}_1, \dots, \vec{t}_p \in \{0,1\}^p$ satisfies $\{0,1\}^p = \bigcup_{i=1}^p (R \oplus \vec{t}_1)$.

EXERCISE 32:

a) Show that the following problem lies in $\mathcal{P}^{C_{LIQUE}}$, that is, can be decided in polynomial time by a DTM permitted oracle queries to CLIQUE:

Given a graph, does the maximal clique it contains have odd size?

b) Show that the following problem MINCIRCUIT belongs to $coNP^{SAT}$:

Given a circuit $C(X_1, ..., X_n)$, there is no strictly smaller one computing the same Boolean function $\{0, 1\}^n \rightarrow \{0, 1\}$.

Hint: Recall Exercise 9j). How to encode the satisfiability of a circuit into a (not too long) formula?

c) Fix $\ell \in \mathbb{N}$. Prove that the following problem lies in \mathcal{P}^{SAT} . Does it belong to \mathcal{NP} ? to co \mathcal{NP} ?

Given a Boolean function φ , can a circuit with at most ℓ gates compute φ ?

- d) Let $\mathcal{B}, \mathcal{C} \supseteq \mathcal{P}$ denote classes of languages closed under polynomial-time reduction and suppose *C* is \mathcal{C} -complete. Then $\mathcal{B}^{\mathcal{C}} = \mathcal{B}^{\mathcal{C}}$.
- e) Prove $\mathbb{NP} \cup \operatorname{co}\mathbb{NP} \subseteq \mathbb{P}^{\mathbb{NP}}$.
- f) If $\mathbb{NP} \cup \operatorname{co}\mathbb{NP} = \mathbb{P}^{\mathbb{NP}}$, then $\mathbb{NP} = \operatorname{co}\mathbb{NP}$. Hint: Recall Exercise 15) and consider $L := (\{0\} \times A) \cup (\{1\} \times A^{\complement})$ with \mathbb{NP} -complete $A \notin \operatorname{co}\mathbb{NP}$.

EXERCISE 33:

For $k \in \mathbb{N}$, class $\Sigma_k^{\mathcal{P}}$ is defined to consist of all problems of the form

$$\{ \vec{x} \in \{0,1\}^n : n \in \mathbb{N}, \ \exists \vec{y}_1 \in \{0,1\}^{\leq p(n)} \ \forall \vec{y}_2 \in \{0,1\}^{\leq p(n)} \ \exists \vec{y}_3 \in \{0,1\}^{\leq p(n)} \\ \cdots Q_k \vec{y}_k \in \{0,1\}^{\leq p(n)} : \langle \vec{x}, \vec{y}_1, \dots, \vec{y}_k \rangle \in R \}$$

with $R \in \mathcal{P}$ and $p \in \mathbb{N}[N]$. Here Q_k means $\forall \forall'$ in case k is even, $Q_k = \exists' \exists'$ if odd.

- a) Prove: $\Sigma_1^{\mathcal{P}} = \mathcal{NP}$ and $\Sigma_k^{\mathcal{P}} \subseteq \mathcal{NP}^{\mathcal{NP}}$ (tower of height *k*) and $\Sigma_k^{\mathcal{P}} \subseteq \mathsf{PSPACE}$.
- b) For $A, B \in \Sigma_k^{\mathcal{P}}$, it holds $A \cap B, A \cup B \in \Sigma_k^{\mathcal{P}}$.
- c) For $L \in \Sigma_k^{\mathcal{P}}$ and $q \in \mathbb{N}[N]$, it holds $\left\{ \vec{x} : \exists \vec{y} \in \{0,1\}^{\leq q(|\vec{x}|)} : \langle \vec{x}, \vec{y} \rangle \in L \right\} \in \Sigma_k^{\mathcal{P}}$.
- d) For $L \in \Sigma_k^{\mathcal{P}}$ and $q \in \mathbb{N}[N]$, it holds $\{\vec{x} : \forall y \leq q(|\vec{x}|) : \langle \vec{x}, y \rangle \in L\} \in \Sigma_k^{\mathcal{P}}$.
- e) What about $\{\vec{x}: \forall \vec{y} \in \{0,1\}^{\leq q(|\vec{x}|)} : \langle \vec{x}, \vec{y} \rangle \in L\}$?
- f) How will (would) the polynomial hierarchy look like in case $\mathcal{P} \neq \mathcal{NP} = co\mathcal{NP}$? Draw and justify. How about the case $\Delta_2^{\mathcal{P}} \neq \Sigma_2^{\mathcal{P}} = \Pi_2^{\mathcal{P}}$?