Complexity Theory

WS 2011/2012, Exercise Sheet #11

EXERCISE 29:

(Schwartz-Zippel)

A multivariate polynomial $p \in \mathbb{Z}[X_1, ..., X_n]$ in dense encoding is an enumeration of its coefficients, lexikographically ordered according to the degree^{*} of their corresponding monomials; one in sparse encoding is an expression over $0, 1, +, -, \times, X_1, ..., X_n$.

- a) Prove that an *n*-variate polynomial has maximal degree ≤ total degree ≤ *n*·maximal degree. An *n*-variate polynomial in dense encoding of length *d* has total degree at most *d*. An *n*-variate polynomial of maximal degree *d* consists in dense encoding of ≤ (*d* + 1)ⁿ monomials.
- b) How 'large' is the *n*-variate polynomial $\prod_{j=1}^{n} (1+X_j)$ in sparse encoding, how large in dense encoding? Determine its total and maximal degree.
- c) Determine the total and maximal degree and size of the dense encoding of the n^2 -variate polynomial det $((X_{ij})_{i,j})$. Analyze the LU decomposition algorithm to obtain a 'small' sparse encoding. How small?
- d) Prove: Two polynomials p,q are equal iff their dense encodings coincide. Specify two different sparse encodings of the same polynomial. Specify a non-zero $p \in \mathbb{Z}[X,Y]$ with infinitely many roots.
- e) Let \mathbb{F} denote an integral domain and $0 \neq p \in \mathbb{F}[X_1, \dots, X_n]$ a polynomial of total degree $\leq d$ and $S \subseteq \mathbb{F}$. With respect to $x_1, \dots, x_n \in S$ guessed uniformly independently at random, prove that $p(x_1, \dots, x_n) = 0$ holds with probability $\leq d/|S|$. Hint: Induction w.r.t. *n* using conditional probabilities.
- f) Describe and analyze an \mathcal{RP} algorithmus for the following problem:

Given multivariate polynomials p, q in spares representation, does $p \neq q$ hold?

g) And for the following problem:

Given $n \in \mathbb{N}$ and *n*-variate polynomials $p_{i,j}$ for $1 \le i, j \le n$, is det $((p_{i,j})_{i,j}) \ne 0$?

 $^{^{*}}X^{k} \cdot Y^{\ell}$ has total degree $k + \ell$ and maximal degree max (k, ℓ) .

EXERCISE 30:

(Schönhage'79)

A Straight-Line Program (SLP) *S* of length *N* (over ring *R* in variables $X_1, ..., X_m$) is an *N*-element sequence of operations $Z_k := 1$, $Z_k := 0$, $Z_k := -Z_j$, $Z_k := Z_j + Z_i$, and $Z_k := Z_j \cdot Z_i$ with i, j < k where $(Z_0, Z_{-1}, ..., Z_{-m+1}) := (X_1, ..., X_m)$. Upon assignment to $X_1, ..., X_m$ values from *R*, *S* calculates inductively $Z_1, Z_2, ..., Z_N$. We abbreviate $Z_N = S(X_1, ..., X_m)$.

- a) Describe a short SLP in one variable *X* calculating X^n . How long does it take to calculate the constant 2^{2^n} ?
- b) Describe a short[†] SLP over \mathbb{Z} in 0 variables calculating *n*!
- c) A variable-free SLP of length N has $|S()| \le 2^{2^N}$.
- d) There are no more than 2^N distinct primes dividing $S() \neq 0$.
- e) To $S() \neq 0$ there are at least 2^N integers $m < 2^{3N}$ satisfying $S() \neq 0 \mod m$. Hint: Prime number theorem of Hadamard/de La Vallée Poussin.
- f) Describe and analyze an efficient (randomized or deterministic) algorithm for the following decision problem:

 $\{\langle S_1, S_2 \rangle : S_1, S_2 \text{ SLPs in 0 variables with } S_1() \neq S_2()\}$

EXERCISE 31:

Let $n \in \mathbb{N}$ and $R \subseteq \{0,1\}^n$. " $\oplus : \{0,1\}^2 \to \{0,1\}$ " denotes *exclusive* or, that is binary addition modulo 2. For $\vec{x}, \vec{u} \in \{0,1\}^n$ write $\vec{x} \oplus \vec{u} := (x_1 \oplus u_1, \dots, x_n \oplus u_n)$ and $X \oplus \vec{u} := \{\vec{x} \oplus \vec{u} : \vec{x} \in X\}$. For a proposition $A(\vec{u})$ with parameter \vec{u} , $\Pr_{\vec{u}}[A(\vec{u})]$ denotes the probability that A becomes true for $\vec{u} \in \{0,1\}^n$ chosen uniformly componentwise independently at random.

- a) Let $\vec{y} \in \{0,1\}^n$. Prove: $\vec{y} \in R \oplus \vec{u} \Leftrightarrow \vec{u} \oplus \vec{y} \in R \Leftrightarrow \vec{u} \in R \oplus \vec{y}$.
- b) $\operatorname{Pr}_{\vec{u}}[\vec{y} \in R \oplus \vec{u}] = \operatorname{Pr}_{\vec{u}}[\vec{u} \in R] \text{ and } \operatorname{Pr}_{\vec{u},\vec{v}}[\vec{y} \in (R \oplus \vec{u}) \cap (R \oplus \vec{v})] = \operatorname{Pr}_{\vec{u}}[\vec{y} \in R \oplus \vec{u}] \cdot \operatorname{Pr}_{\vec{v}}[\vec{y} \in R \oplus \vec{v}].$
- c) Let $1 \le n \le p < 2^n$ and $R \subseteq \{0,1\}^p$ with $\operatorname{Card}(R) \le 2^{-n} \cdot 2^p$. Show that no choice of $\vec{t}_1, \ldots, \vec{t}_p \in \{0,1\}^p$ satisfies $\{0,1\}^p = \bigcup_{i=1}^p (R \oplus \vec{t}_1)$.

[†]The world record being $O(\sqrt{n} \cdot \text{polylog} n)$...