## Complexity Theory

## WS 2011/2012, Exercise Sheet \#11

## EXERCISE 29:

(Schwartz-Zippel)
A multivariate polynomial $p \in \mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]$ in dense encoding is an enumeration of its coefficients, lexikographically ordered according to the degree* of their corresponding monomials; one in sparse encoding is an expression over $0,1,+,-, \times, X_{1}, \ldots, X_{n}$.
a) Prove that an $n$-variate polynomial has maximal degree $\leq$ total degree $\leq n$-maximal degree. An $n$-variate polynomial in dense encoding of length $d$ has total degree at most $d$.
An $n$-variate polynomial of maximal degree $d$ consists in dense encoding of $\leq(d+1)^{n}$ monomials.
b) How 'large' is the $n$-variate polynomial $\prod_{j=1}^{n}\left(1+X_{j}\right)$ in sparse encoding, how large in dense encoding? Determine its total and maximal degree.
c) Determine the total and maximal degree and size of the dense encoding of the $n^{2}$-variate polynomial det $\left(\left(X_{i j}\right)_{i, j}\right)$. Analyze the LU decomposition algorithm to obtain a 'small' sparse encoding. How small?
d) Prove: Two polynomials $p, q$ are equal iff their dense encodings coincide. Specify two different sparse encodings of the same polynomial. Specify a non-zero $p \in \mathbb{Z}[X, Y]$ with infinitely many roots.
e) Let $\mathbb{F}$ denote an integral domain and $0 \neq p \in \mathbb{F}\left[X_{1}, \ldots, X_{n}\right]$ a polynomial of total degree $\leq d$ and $S \subseteq \mathbb{F}$. With respect to $x_{1}, \ldots, x_{n} \in S$ guessed uniformly independently at random, prove that $p\left(x_{1}, \ldots, x_{n}\right)=0$ holds with probability $\leq d /|S|$. Hint: Induction w.r.t. $n$ using conditional probabilities.
f) Describe and analyze an $\mathcal{R P}$ algorithmus for the following problem:

Given multivariate polynomials $p, q$ in spares representation, does $p \neq q$ hold?
g) And for the following problem:

Given $n \in \mathbb{N}$ and $n$-variate polynomials $p_{i, j}$ for $1 \leq i, j \leq n$, is $\operatorname{det}\left(\left(p_{i, j}\right)_{i, j}\right) \neq 0$ ?

[^0]
## EXERCISE 30:

A Straight-Line Program (SLP) $S$ of length $N$ (over ring $R$ in variables $X_{1}, \ldots, X_{m}$ ) is an $N$ element sequence of operations $Z_{k}:=1, Z_{k}:=0, Z_{k}:=-Z_{j}, Z_{k}:=Z_{j}+Z_{i}$, and $Z_{k}:=Z_{j} \cdot Z_{i}$ with $i, j<k$ where $\left(Z_{0}, Z_{-1}, \ldots, Z_{-m+1}\right):=\left(X_{1}, \ldots, X_{m}\right)$. Upon assignment to $X_{1}, \ldots, X_{m}$ values from $R$, $S$ calculates inductively $Z_{1}, Z_{2}, \ldots, Z_{N}$. We abbreviate $Z_{N}=S\left(X_{1}, \ldots, X_{m}\right)$.
a) Describe a short SLP in one variable $X$ calculating $X^{n}$. How long does it take to calculate the constant $2^{2^{n}}$ ?
b) Describe a short ${ }^{\dagger}$ SLP over $\mathbb{Z}$ in 0 variables calculating $n$ !
c) A variable-free SLP of length $N$ has $|S()| \leq 2^{2^{N}}$.
d) There are no more than $2^{N}$ distinct primes dividing $S() \neq 0$.
e) To $S() \neq 0$ there are at least $2^{N}$ integers $m<2^{3 N}$ satisfying $S() \neq 0 \bmod m$. Hint: Prime number theorem of Hadamard/de La Vallée Poussin.
f) Describe and analyze an efficient (randomized or deterministic) algorithm for the following decision problem:

$$
\left\{\left\langle S_{1}, S_{2}\right\rangle: S_{1}, S_{2} \text { SLPs in } 0 \text { variables with } S_{1}() \neq S_{2}()\right\}
$$

## EXERCISE 31:

Let $n \in \mathbb{N}$ and $R \subseteq\{0,1\}^{n}$. " $\oplus:\{0,1\}^{2} \rightarrow\{0,1\}$ " denotes exclusive or, that is binary addition modulo 2. For $\vec{x}, \vec{u} \in\{0,1\}^{n}$ write $\vec{x} \oplus \vec{u}:=\left(x_{1} \oplus u_{1}, \ldots, x_{n} \oplus u_{n}\right)$ and $X \oplus \vec{u}:=\{\vec{x} \oplus \vec{u}: \vec{x} \in X\}$. For a proposition $A(\vec{u})$ with parameter $\vec{u}, \operatorname{Pr}_{\vec{u}}[A(\vec{u})]$ denotes the probability that $A$ becomes true for $\vec{u} \in\{0,1\}^{n}$ chosen uniformly componentwise independently at random.
a) Let $\vec{y} \in\{0,1\}^{n}$. Prove: $\vec{y} \in R \oplus \vec{u} \Leftrightarrow \vec{u} \oplus \vec{y} \in R \Leftrightarrow \vec{u} \in R \oplus \vec{y}$.
b) $\operatorname{Pr}_{\vec{u}}[\vec{y} \in R \oplus \vec{u}]=\operatorname{Pr}_{\vec{u}}[\vec{u} \in R]$ and $\operatorname{Pr}_{\vec{u}, \vec{v}}[\vec{y} \in(R \oplus \vec{u}) \cap(R \oplus \vec{v})]=\operatorname{Pr}_{\vec{u}}[\vec{y} \in R \oplus \vec{u}] \cdot \operatorname{Pr}_{\vec{v}}[\vec{y} \in R \oplus \vec{v}]$.
c) Let $1 \leq n \leq p<2^{n}$ and $R \subseteq\{0,1\}^{p}$ with $\operatorname{Card}(R) \leq 2^{-n} \cdot 2^{p}$. Show that no choice of $\vec{t}_{1}, \ldots \vec{t}_{p} \in\{0,1\}^{p}$ satisfies $\{0,1\}^{p}=\bigcup_{i=1}^{p}\left(R \oplus \vec{t}_{1}\right)$.

[^1]
[^0]:    ${ }^{*} X^{k} \cdot Y^{\ell}$ has total degree $k+\ell$ and maximal degree $\max (k, \ell)$.

[^1]:    ${ }^{\dagger}$ The world record being $\mathcal{O}(\sqrt{n} \cdot$ polylog $n) \ldots$

