## Complexity Theory

WS 2011/2012, Exercise Sheet \#10

## EXERCISE 26:

a) Install the public-key system pgp on your computer; free versions are available from GNU for Linux, Windows, and MacOS X. (Users of the mathematics department's computer pool may skip this task and employ the installed gpg...)
b) Make yourself familiar with the software from a); even if that might mean to RTFM.
c) Create a key pair. Ponder on where and how to store the private part. Distribute the public part: on your home page, on a keyserver like http://wwwkeys.de.pgp.net, or elsehow. Bring ten print-outs of your public key's fingerprint on 2012-01-27.
d) Send me your solutions to Exercises 27 and 28 electronically (scanned or pdf/latex), signed with your private key and encoded with $\mathrm{my}^{\dagger}$ public key.

## EXERCISE 27:

a) Fix $n \in \mathbb{N}$. Verify that $\mathbb{Z}_{n}:=\{0,1, \ldots, n-1\}$ constitutes a commutative ring with respect to operations $x \oplus y:=(x+y)$ rem $n$ and $x \otimes y:=(x \cdot y)$ rem $n$. Prove: $(x$ rem $n)+(y$ rem $n)=$ $(x+y)$ rem $n$ and $(x$ rem $n) \cdot(y$ rem $n)=(x \cdot y)$ rem $n$ for all $x, y \in \mathbb{Z}$.
b) i) Each $x \in \mathbb{Z}_{n}$ coprime to $n$ admits a multiplicative inverse $x^{-1} \in \mathbb{Z}_{n}$.
ii) If $p$ is even a prime, every $x \in \mathbb{Z}_{p}$ has $x^{p}=x$ (so-called Fermat's little theorem).
iii) If $p, q$ are coprime and $a, b \in \mathbb{Z}$ with $a \equiv b \bmod p$ and $a \equiv b \bmod q$, then $a \equiv b \bmod p q$.

Hint: To coprime $a, b \in \mathbb{Z}$, the extended Euclidean Algorithm yields $r, s \in \mathbb{Z}$ with $r a+s b=1$. You may furthermore employ Lagrange's Theorem.
c) Let $p, q$ be distinct primes, $n:=p \cdot q$ and $\varphi:=(p-1) \cdot(q-1)$. Furthermore let $1 \neq e \in \mathbb{Z}_{\varphi}$ be coprime to $\varphi$ and $d:=e^{-1}$ rem $\varphi$ according to b ). Conclude that the functions

$$
E(\tilde{e}): \mathbb{Z}_{n} \backslash\{0\} \ni x \mapsto x^{e} \text { rem } n \in \mathbb{Z}_{n} \quad \text { and } \quad D(\tilde{d}): \mathbb{Z}_{n} \backslash\{0\} \ni y \mapsto y^{d} \text { rem } n \in \mathbb{Z}_{n}
$$

are computable in polynomial time and satisfy $D(\tilde{d}, E(\tilde{e}, x))=x$ as well as $E(\tilde{e}, D(\tilde{d}, y))=y$, where $\tilde{e}:=\langle e, n\rangle$ and $\tilde{d}:=\langle d, n\rangle$.
d) The public-key system from c) is known as RSA after the initials of its inventors RIVEST, Shamir, and Adleman. Here, $\tilde{e}$ works as public key and $\tilde{d}$ as private one. How can the operations sign and encrype from Exercise 26d) be realized?
Suppose integers can be factored in polynomial time: How would that compromise RSA?

[^0]
## EXERCISE 28:

a) For $\vec{x} \in\{0,1\}^{n}$ fixed and $\vec{y}$ a random binary string of length $n$, the probability that $\vec{x}$ and $\vec{y}$ differ at precisely $j$ places is $\binom{n}{j} \cdot 2^{-n}$.
b) Let $X$ be a $0 / 1$ random experiment (i.e. a Bernoulli random variable) succeeding with (possibly very small) probabiliy $p>0$. Prove: Among $\frac{20}{p}$ repetitions, at least one of the experiments will succeed with probability $\geq 1-e^{-20}$, that is practically certain.
c) Let $X$ again denote a Bernoulli random variable with success probability $p$. Calculate the probability that among $n$ repetitions more than half of the trials succeed. Determine the expectation $\mu$ and variance $\sigma^{2}$ of the random variable $Y:=\sum_{j=1}^{n} X_{j}$ describing tha number of successful trials.
d) Again let $X$ denote a Bernoulli random variable with $p \geq 1 / 2+\varepsilon$ and $n:=40 / \varepsilon^{2}$. Prove that among $n$ repetitions of $X$ more than half the trials succeeds with almost certainty; and that in case $p \leq 1 / 2-\varepsilon$ almost certainly less than half of the trials succeeds. Hint: Look up and apply the Chernoff Bound. How about Chebyshev's inequality?


[^0]:    ${ }^{\dagger}$ available, e.g., from http://www.mathematik.tu-darmstadt.de/~ziegler/public.key, fingerprint: AF37 ECD4 AEBE 3D4E 76EB 4445 227F 4D27 4A4B E6FE

