Complexity Theory

WS 2011/2012, Exercise Sheet #9

EXERCISE 24:

The lecture has considered Boolean circuits composed from binary AND and OR and unary NOT.

- a) Let us now temporarily permit AND and OR gates with an unbounded number of inputs, the size of such a gate being this number. Prove: In every circuit of polynomial (why?) size, these gates can be replaced by their binary counterparts while the size grows at most by a constant factor and depth by at most a logarithmic one.
- b) Now demonstrate that the three above types of gates can be replaced by one single type to rebuild all circuits while affecting both depth and size by no more than a constant factor.
- c) Prove that, from AND and OR alone, only monotone functions can be realized, i.e. satisfying

 $\forall 1 \le j \le n \quad \forall x_1, \dots, x_n: \quad f(x_1, \dots, x_{j-1}, 0, x_{j+1}, \dots, x_n) \le f(x_1, \dots, x_{j-1}, 1, x_{j+1}, \dots, x_n)$

- d) Recall Exercise 9g) and prove: Every language $L \subseteq \{0,1\}^*$ can be decided by a family of circuits of circuits. What size and depth do you achieve? Is the family uniform?
- e) The Boolean function $Mux_n : (x_1, \dots, x_n; y_0, \dots, y_{2^n-1}) \mapsto y_{(x_1, \dots, x_n)_2}$ is called a Multiplexer. Sketch a circuit C_n for Mux_n of depth $\mathcal{O}(n)$. Is $(C_n)_n$ uniform?

EXERCISE 25:

Fix $\Gamma \subseteq \{0,1\}^k$ and $Q \subseteq \{0,1\}^\ell$ and $\delta \colon \Gamma \times Q \mapsto \Gamma \times Q \times \{00,01,10\}$.

- a) Describe a circuit C_{δ} computing δ .
- b) Let $\mathcal{M} = (Q, \Sigma, \Gamma, \delta)$ denote a DTM and $s \in \mathbb{N}$. Describe a circuit $C'_{\delta,s}$ with the following functionality: Its input consists of the encoding of a configuration of \mathcal{M} : state, tape contents of length < swith one bit per cell indicating whether the head is presently reading it. The output of $C'_{\delta,s}$ the encodes \mathcal{M} 's configuration one step later, that is, the new state, new tape contents with updated indicators for the head position.

How large and deep is $C'_{\delta,s}$, depending on *s*?

- c) Let $n \in \mathbb{N}$, $s \ge S_{\mathcal{M}}(n)$, and $t \ge T_{\mathcal{M}}(n)$. Describe a circuit $C'_{\mathcal{M},s,t}$ simulating \mathcal{M} on all inputs of length *n*. Estimate the size and depth of $C'_{\delta st}$ asymptotically in terms of s and t.
- d) Prove that a polynomial-time DTM \mathcal{M} can be simulated by a uniform family of polynomial size circuits. Moreover, CIRCUITVAL is P-complete.