Complexity Theory

WS 2011/2012, Exercise Sheet #8

EXERCISE 21:

- a) Adapt Exercise 5 to DTMs with separate *read-only* input tape.
- b) Adapt Exercise 12c) to show $\mathcal{NL} \subseteq \mathcal{P}$.

So far we have considered polynomial-time reductions " \preccurlyeq_p ". Now define " $A \preccurlyeq_L B$ " as the existence of a total function f such that $x \in A \Leftrightarrow f(x) \in B$ computable in logarithmic space where neither input nor output tape account for the space consumption.

- c) Let \mathcal{FL} denote the class of functions computable within logarithmic space. Prove: $\mathcal{FL} \subseteq \mathcal{FP}$.
- d) Prove that \mathcal{FL} is closed under composition.
- e) Conclude: i) $A \preccurlyeq_{L} B \Rightarrow A \preccurlyeq_{p} B$, ii) $A \preccurlyeq_{L} B \in \mathcal{L} \Rightarrow A \in \mathcal{L}$, iii) $A \preccurlyeq_{L} B \in \mathcal{NL} \Rightarrow A \in \mathcal{NL}$ iv) $A \preccurlyeq_{L} B \land B \preccurlyeq_{L} C \Rightarrow A \preccurlyeq_{L} C$.

EXERCISE 22:

- a) Prove: CYCLIC := { $\langle G \rangle$: directed graph *G* contains a cycle} $\in \mathcal{NL}$.
- b) Prove: $2SAT \in co\mathcal{NL}$. Hint: Analyze Exercise 9c+d).
- c) Prove that 2SAT is coNL-complete.

A graph G = (V, E) is called *bipartite* if its vertices can be partitioned into two classes with no edges running within one class; formally:

 $\exists V_1, V_2: V = V_1 \cup V_2 \land V_1 \cap V_2 = \emptyset \quad \forall (u, v) \in E: (u \in V_1 \land v \in V_2) \lor (v \in V_1 \land u \in V_2) .$

- d) Prove that a graph is bipartite iff it contains no cycle of odd length.
- e) Prove: BIPARTITE := { $\langle G \rangle$: graph G is bipartite} $\in co\mathcal{NL}$.
- f) Prove that BIPARTITE is $coN\mathcal{L}$ -complete.
- g) Can you prove (directly) that $2SAT,BIPARTITE \in \mathcal{NL}$?

EXERCISE 23:

DIRPATH := { $\langle G, s, t \rangle$: directed graph G = (V, E) contains a path from $s \in V$ to $t \in V$ }

is called the *directed* path problem; similarly UNDIRPATH for the *undirected* counterpart. OMER REINGOLD has received the 2006 ACM Grace Murray Hopper Prize for his 2004 proof that undirected path can be decided in *deterministic* logarithmic space: UNDIRPATH $\in \mathcal{L}$.

- a) Prove that every $L \in \mathcal{P}$ satisfies $L \preccurlyeq_p \text{UNDIRPATH}$.
- b) Does this answer the important open question " \mathcal{L} versus \mathcal{P} "? Why/why not? Specify two \mathcal{L} -complete problems.