Complexity Theory

WS 2011/2012, Exercise Sheet #7

EXERCISE 18:

A function $s : \mathbb{N} \to \mathbb{N}$ is called *constructible* if a Turing machine can compute it unarily (i.e. the mapping $1^n \mapsto 1^{s(n)}$) within time $\mathcal{O}(s(n))$.

- a) Prove that every $s(n) \ge n$ expressible as arithmetic expression over $1, +, \times, x \mapsto 2^x$ is constructible.
- b) What changes if we replace 'unary' with 'binary', i.e. require $bin(n) \mapsto 1^{s(n)}$ or $1^n \mapsto bin(s(n))$ or $bin(n) \mapsto bin(s(n))$ to be computable in time $\mathcal{O}(s(n))$?
- c) Where and how exactly did the hypothesis for $n \mapsto s(n)$ to be constructible enter in the proof of Savitch's Theorem?
- d) Show that this prequisite can be weakened to the function $1^n \mapsto bin(s(n))$ being computable within space $O(s(n)^2)$.
- e) What running time does the deterministic simulation in the proof of Savitch's Theorem take?

EXERCISE 19:

Let $s : \mathbb{N} \to \mathbb{N}$ be constructible. Prove:

- a) NSPACE $(s(n)) \subseteq \text{coNSPACE}(s(n)^2)$
- b) coNSPACE $(s(n)) \subseteq$ NSPACE $(s(n)^2)$
- c) Conclude NPSPACE = coNPSPACE.
- d) Can you modify this argument to show $\mathcal{NP} = co\mathcal{NP}$?

EXERCISE 20:

Consider the language

DIRPATH =
$$\left\{ \langle G, s, t \rangle \middle| \begin{array}{c} G = (V, E) \text{ is a directed graph, } s, t \in V \text{ and} \\ \text{there exists a directed path from } s \text{ to } t \text{ in } G. \end{array} \right\}.$$

Describe and analyze an algorithm deciding DIRPATH while using, in addition to the space occupied by the input, only $O(\log(n)^2)$ additional tape cells. What is its running time?