Complexity Theory

WS 2011/2012, Exercise Sheet \#5

Knapsack is the problem of collecting packets to achieve large 'value' at small 'weight'. Its decision variant is the language

$$
\begin{aligned}
\text { KNAPSACK }= & \left\{\left\langle g_{1}, \ldots, g_{m}, g, w_{1}, \ldots, w_{m}, w\right\rangle: m, g_{i}, g, w_{i}, w \in \mathbb{N},\right. \\
& \left.\exists \alpha_{1}, \ldots, \alpha_{m} \in\{0,1\}: \sum_{i} \alpha_{i} w_{i} \geq w \wedge \sum_{i} \alpha_{i} g_{i} \leq g\right\}
\end{aligned}
$$

Its maximization variant is the function

$$
\text { MAXKNAPSACK : }\left\langle g_{1}, \ldots, g_{m}, g, w_{1}, \ldots, w_{m}\right\rangle \mapsto \max \left\{\sum_{i} \alpha_{i} w_{i}: \alpha_{i} \in\{0,1\}, \sum_{i} \alpha_{i} g_{i} \leq g\right\}
$$

Integer linear programming is the decision problem

$$
\operatorname{ILP}:=\left\{\langle A, b\rangle: m \in \mathbb{N}, A \in \mathbb{Z}^{m \times m}, b \in \mathbb{Z}^{m}: \exists x \in \mathbb{Z}^{m}: A \cdot x \leq b\right\}
$$

EXERCISE 13:

a) Prove that Knapsack is $\mathcal{N P}$-complete.
b) Prove: MAXKnapsack is computable in polynomial time iff Knapsack is decidable in polynomial time. Hint: Recall Exercise 7.
c) Prove that ILP is $\mathcal{N P}$-hard.
d) Reduce Hamilton Circuit HC to Traveling Salesperson TSP.
e) Let $\mathbb{P}=\{2,3,5,7,11, \ldots\}$ the set of prime numbers. Prove: $\mathbb{N} \backslash \mathbb{P} \in \mathcal{N P}$.
f) We consider the solvability problem over the integers of a multivariate polynomial equation:

$$
\text { DIOPHANT }:=\left\{\langle p\rangle: m \in \mathbb{N}, p \in \mathbb{N}\left[X_{1}, \ldots, X_{m}\right], \exists x_{1}, \ldots, x_{m} \in \mathbb{N}: p\left(x_{1}, \ldots, x_{m}\right)=0\right\}
$$

Construct (and prove correctness of) an explicit polynomial-time reduction ILP \preccurlyeq pIOPHANT.
g) Are DIOphant and ILP $\mathcal{N} \mathcal{P}$-complete? What makes this difficult to prove?

In a) and c) you may use that the following problems have already been shown $\mathcal{N P}$-complete in the lecture: SAT, 3SAT, SubSETSUM.

EXERCISE 14:

Consider the following optimization problem: Given $\ell \in \mathbb{N}$ and m packets of weights $g_{1}, \ldots, g_{m} \in \mathbb{N}$; distribute them upon ℓ bins such as to minimize their maximal weight.
a) Formalize this as a decision problem and prove it in $\mathcal{N P}$.
(It has been shown $\mathcal{N P}$-hard even for $\ell=2 \ldots$)
b) Prove that the following greedy algorithm produces an approximation of rate 2 :

Iteratively for each $i=1, \ldots, m$ put packet $\# i$ into a currently lightest bin.
c) Demonstrate that the algorithm from b) achieves no better rate than 2 by constructing to $\varepsilon>0$ an input on which its output exceeds the optimal solution by a factor at least $2-\varepsilon$.

