Martin Ziegler Carsten Rösnick

Complexity Theory

WS 2011/2012, Exercise Sheet #4

EXERCISE 10:

Recall the problems **3SAT** and VC mentioned in the lecture.

- a) Prove VC \preccurlyeq_p SAT directly, i.e. without invoking the Cook-Levin Theorem.
- b) Argue: every vertex cover of a 2-clique must contain at least one vertex; every vertex cover of a 3-clique must contain at least two vertices.
- c) Prove: **3SAT** \preccurlyeq_p VC.

Hint: The following drawing illustrates a reduction mapping an instance $\Phi = (A \lor A \lor B) \land (\neg A \lor \neg B \lor \neg C) \land (\neg A \lor B \lor C)$ of **3SAT** to an instance (G,k) of VC with k :=#variables $+ 2 \cdot$ #clauses.

EXERCISE 11:

For a language $A \subseteq \Sigma^*$, its *Kleene-star* $A^* := \{\bar{a}_1 \bar{a}_2 \cdots \bar{a}_n | n \in \mathbb{N}_0, \bar{a}_i \in A\}$ is the language consisting of all concatenations of finitely many words from *A*.

- a) Discuss and compare the two different meanings " Σ^* " can have. What is $(A^*)^*$?
- b) Prove that \mathcal{P} is closed under
 - i) binary union, i.e., $A, B \in \mathcal{P} \Rightarrow A \cup B \in \mathcal{P}$
 - ii) intersection, i.e. $A, B \in \mathcal{P} \Rightarrow A \cap B \in \mathcal{P}$
 - iii) and complement, i.e. $A \in \mathcal{P} \Rightarrow \Sigma^* \setminus A \in \mathcal{P}$.

One can (but you don't need to) show that \mathcal{P} is also closed under Kleene-star.

- c) Prove PSPACE closed under i) union, ii) intersection, iii) complement, iv) Kleene-star.
- d) Prove that also NP is closed under union, intersection, complement, and Kleene-star.
- e) Demonstrate that the complements of languages in NP are precisely those of the form

$$ig\{ar{x}\in\Sigma^*: orallar{y}\in\Sigma^{\leq|ar{x}|^k}: \langlear{x},ar{y}
angle\in Kig\}, \qquad K\in\mathbb{P}, \ k\in\mathbb{N}.$$

EXERCISE 12:

A *non*deterministic Turing maschine (NTM) $\mathcal{N} = (Q, \Sigma, \Gamma, \delta)$ has a transition *relation*

$$\Delta \quad \subseteq \quad \left((Q \setminus \{q_-, q_+\}) \times \Gamma \right) \times \left(Q \times \Gamma \times \{\mathsf{L}, \mathsf{N}, \mathsf{R}\} \right)$$

A transition $(q,a) \rightarrow (p,b,D)$ with $D \in \{L, R, N\}$ is valid if $(q,a,p,b,D) \in \Delta$. A computation of \mathcal{N} is a sequence of configurations such that each successor arises from its predecessor via a valid transition.

 \mathcal{N} accepts an input \vec{w} if there exists a computation of \mathcal{N} starting with configuration (s, \vec{w}) and leading to a configuration with accepting state.

 \mathcal{N} accepts the language $L \subseteq \Sigma^*$ if it accepts precisely those inputs from L. \mathcal{N} decides L if, in addition, every computation of \mathcal{N} terminates.

The run time $T_{\mathcal{N}}(\vec{w})$ on \vec{w} is the maximum length of all computations of \mathcal{N} on input \vec{w} ; similarly for space $S_{\mathcal{N}}(\vec{w})$.

- a) Explain why (and how) a DTM can be considered as a NTM. Describe a NTM deciding Boolean satisfiability SAT within polynomial time.
- b) Sketch the set of all possible computations of a NTM on fixed input w as a tree. Bound its degree: how many successors can each node have at most?
 Argue that any NTM can be converted, possibly with a linear slow-down, into an equivalent one having at most two possible successor configurations in each step, i.e. such that Card{(p,b,D): (q,a,p,b,D) ∈ δ} ≤ 2 holds for all q ∈ Q and a ∈ Γ.
- c) Construct to any (multi-head) NTM ${\mathcal N}$ a (multi-head) DTM ${\mathcal M}$ simulating ${\mathcal N}$ with

$$T_{\mathcal{M}}(n) \leq 2^{\mathbb{O}(T_{\mathcal{N}}(n))}, \qquad S_{\mathcal{M}}(n) \leq \mathbb{O}(T_{\mathcal{N}}(n) + S_{\mathcal{N}}(n))$$

d) Let $p \in \mathbb{N}[N]$ be a polynomial and $L \subseteq \Sigma^*$ decidable in deterministic time $\mathcal{O}(p(n))$. Describe a NTM deciding L'_p in polynomial time, where

$$L_p' := \left\{ ec{x} \in \Sigma^* : \exists ec{y} \in \Sigma^{\leq p(|ec{x}|)} : \langle ec{x}, ec{y}
angle \in L
ight\}$$
 .

e) Conversely suppose K is decidable by a NTM in polynomial time. Prove that there exists $p \in \mathbb{N}[N]$ and a langauge L decidable in deterministic polynomial time such that $K = L'_p$.