Complexity Theory

WS 2011/2012, Exercise Sheet \#4

EXERCISE 10:

Recall the problems 3SAT and VC mentioned in the lecture.
a) Prove VC \preccurlyeq_{p} SAT directly, i.e. without invoking the Cook-Levin Theorem.
b) Argue: every vertex cover of a 2-clique must contain at least one vertex; every vertex cover of a 3-clique must contain at least two vertices.
c) Prove: 3SAT $\preccurlyeq_{p} \mathrm{VC}$.

Hint: The following drawing illustrates a reduction mapping an instance $\Phi=(A \vee A \vee B) \wedge(\neg A \vee$ $\neg B \vee \neg C) \wedge(\neg A \vee B \vee C)$ of 3SAT to an instance (G, k) of VC with $k:=$ \#variables $+2 \cdot$ \#clauses.

EXERCISE 11:

For a language $A \subseteq \Sigma^{*}$, its Kleene-star $A^{*}:=\left\{\bar{a}_{1} \bar{a}_{2} \cdots \bar{a}_{n} \mid n \in \mathbb{N}_{0}, \bar{a}_{i} \in A\right\}$ is the language consisting of all concatenations of finitely many words from A.
a) Discuss and compare the two different meanings " Σ^{*} " can have. What is $\left(A^{*}\right)^{*}$?
b) Prove that \mathcal{P} is closed under
i) binary union, i.e., $A, B \in \mathcal{P} \Rightarrow A \cup B \in \mathcal{P}$
ii) intersection, i.e. $A, B \in \mathcal{P} \Rightarrow A \cap B \in \mathcal{P}$
iii) and complement, i.e. $A \in \mathcal{P} \Rightarrow \Sigma^{*} \backslash A \in \mathcal{P}$.

One can (but you don't need to) show that \mathcal{P} is also closed under Kleene-star.
c) Prove PSPACE closed under i) union, ii) intersection, iii) complement, iv) Kleene-star.
d) Prove that also $\mathcal{N P}$ is closed under union, intersection, complement, and Kleene-star.
e) Demonstrate that the complements of languages in $\mathcal{N P}$ are precisely those of the form

$$
\left\{\bar{x} \in \Sigma^{*}: \forall \bar{y} \in \Sigma^{\leq|\bar{x}|^{k}}:\langle\bar{x}, \bar{y}\rangle \in K\right\}, \quad K \in \mathcal{P}, k \in \mathbb{N} .
$$

EXERCISE 12:

A nondeterministic Turing maschine (NTM) $\mathcal{N}=(Q, \Sigma, \Gamma, \delta)$ has a transition relation

$$
\Delta \subseteq\left(\left(Q \backslash\left\{q_{-}, q_{+}\right\}\right) \times \Gamma\right) \times(Q \times \Gamma \times\{\mathrm{L}, \mathrm{~N}, \mathrm{R}\})
$$

A transition $(q, a) \rightarrow(p, b, D)$ with $D \in\{\mathrm{~L}, \mathrm{R}, \mathrm{N}\}$ is valid if $(q, a, p, b, D) \in \Delta$. A computation of \mathcal{N} is a sequence of configurations such that each successor arises from its predecessor via a valid transition.
\mathcal{N} accepts an input \vec{w} if there exists a computation of \mathcal{N} starting with configuration (s, \vec{w}) and leading to a configuration with accepting state.
\mathcal{N} accepts the language $L \subseteq \Sigma^{*}$ if it accepts precisely those inputs from $L . \mathcal{N}$ decides L if, in addition, every computation of \mathcal{N} terminates.
The run time $T_{\mathcal{N}}(\vec{w})$ on \vec{w} is the maximum length of all computations of \mathcal{N} on input \vec{w}; similarly for space $S_{\mathcal{N}}(\vec{w})$.
a) Explain why (and how) a DTM can be considered as a NTM. Describe a NTM deciding Boolean satisfiability SAT within polynomial time.
b) Sketch the set of all possible computations of a NTM on fixed input \vec{w} as a tree. Bound its degree: how many successors can each node have at most?
Argue that any NTM can be converted, possibly with a linear slow-down, into an equivalent one having at most two possible successor configurations in each step, i.e. such that $\operatorname{Card}\{(p, b, D):(q, a, p, b, D) \in \delta\} \leq 2$ holds for all $q \in Q$ and $a \in \Gamma$.
c) Construct to any (multi-head) $\mathrm{NTM} \mathcal{N}$ a (multi-head) DTM \mathcal{M} simulating \mathcal{N} with

$$
T_{\mathcal{M}}(n) \leq 2^{\mathcal{O}\left(T_{\mathcal{N}}(n)\right)}, \quad S_{\mathcal{M}}(n) \leq \mathcal{O}\left(T_{\mathcal{N}}(n)+S_{\mathcal{N}}(n)\right)
$$

d) Let $p \in \mathbb{N}[N]$ be a polynomial and $L \subseteq \Sigma^{*}$ decidable in deterministic time $\mathcal{O}(p(n))$. Describe a NTM deciding L_{p}^{\prime} in polynomial time, where

$$
L_{p}^{\prime}:=\left\{\vec{x} \in \Sigma^{*}: \exists \vec{y} \in \Sigma^{\leq p(|\vec{x}|)}:\langle\vec{x}, \vec{y}\rangle \in L\right\} .
$$

e) Conversely suppose K is decidable by a NTM in polynomial time. Prove that there exists $p \in \mathbb{N}[N]$ and a langauge L decidable in deterministic polynomial time such that $K=L_{p}^{\prime}$.

