Complexity Theory

WS 2011/2012, Exercise Sheet \#3

EXERCISE 9:

Let G denote a (directed or undirected) graph. Reachability is the question of whether, given G and a pair (u, v) of nodes, there exists a path from u to v in G.
a) Describe an algorithm deciding reachability in polynomial time.

Now consider 2SAT: the question of whether a Boolean term in two-conjunctive form (2CNF, i.e. with two literals per clause) admits a satisfying assignment.
b) Argue that the question of whether a given (reasonable binary encoding of a) Boolean term is in conjunctive form can be decided in polynomial time.
c) A Boolean term $t\left(x_{1}, \ldots, x_{n}\right)$ in in 2CNF induces a (so-called implication) graph G_{t} with literales $x_{1}, \ldots, x_{n}, \neg x_{1}, \ldots, \neg x_{n}$ as vertices and directed edges $(\neg u, v)$ and $(\neg v, u)$ between literales u, v for every clause $(u \vee v)$ of t. Prove: If t has a satisfying assignment and x is a variable of t, then G_{t} admits no path from x to $\neg x$ nor from $\neg x$ to x.
d) Suppose conversely for each variable x in t that G_{t} admits no path from x to $\neg x$ nor from $\neg x$ to x. Conclude that t has a satisfying assignment.
e) Prove that 2 SAT is decidable in polynomial time.
f) A term $t=C_{1} \vee C_{2} \vee \cdots \vee C_{m}$ with each C_{i} a conjunction of literales is called in disjunctive form. Show that satisfiability of terms in disjunctive form can be decided in polynomial time.
g) Prove: i) There are precisely $2^{2^{n}}$ distinct n-variate Boolean functions $f:\{0,1\}^{n} \rightarrow\{0,1\}$; and each of them can be expressed as a term in ii) disjunctive and iii) in conjunctive form.
Hint: Verify $\quad f\left(x_{1}, \ldots, x_{n}\right)=\bigvee_{\vec{y}: f(\vec{y})=1} \bigwedge_{i=1}^{n}\left\{\begin{aligned} x_{i} & : y_{i}=1 \\ \neg x_{i} & : y_{i}=0\end{aligned}\right.$
h) Specify a family $\left(f_{n}\right)$ of n-variate Boolean functions expressible as terms in disjunctive form of polynomial size but not as terms in conjunctive form of polynomial size (without proof).
j) Describe an algorithm transforming a given Boolean term t within polynomial time into a term s in conjunctive normal form such that it holds: t is satisfiable iff s is.
k) Consider the following problem called Equivalence:

$$
\text { Given two } n \text {-variate Boolean terms s and } t \text {, does it hold } \forall \vec{a} \in\{0,1\}^{n}: s(\vec{a})=t(\vec{a}) ?
$$

Prove this problem as computationally as hard as unsatisfiability, the complement of SAT.
$\ell)$ Prove or refute: i) $A \subseteq B \Rightarrow A \preccurlyeq p B$, ii) $A \preccurlyeq{ }_{p} B \Rightarrow A \subseteq B$.

