Complexity Theory

WS 2011/2012, Exercise Sheet \#2

EXERCISE 6:

The Turing machines considered in the lecture employ one single head (accessing possibly multiple tapes simultaneously).
a) Formalize the concept of a Turing machine with k heads it can move independently. Where does its transition function map from/to?
b) In view of Exercise 4b) describe now a Turing machine with two heads deciding PALIN in linear time $\mathcal{O}(n)$.

EXERCISE 7:

So far we have considered decision problems (i.e. formal languages) $L \subseteq \Sigma^{*}$. A Turing machine \mathcal{M} is said to compute a function $f: \operatorname{dom}(f) \subseteq \Sigma^{*} \rightarrow \Sigma^{*}$ if

- on inputs $\vec{x} \in \operatorname{dom}(f), \mathcal{M}$ prints $f(\vec{x})$ and enters the accepting state;
- on inputs $\vec{x} \notin \operatorname{dom}(f)$ does not enter the accepting state.

Running time and memory consumption are defined canonically. Prove:
a) If f can be computed in polynomial time, there exists a $k \in \mathbb{N}$ with $|f(\vec{x})| \leq \mathcal{O}\left(|\vec{x}|^{k}\right)$ for all $\vec{x} \in \operatorname{dom}(f)$, where $|\vec{x}|=n$ denotes the length of $\vec{x} \in \Sigma^{n}$.
b) If f can be computed in polynomial time then the following language, $\operatorname{subgraph}(f)$, is polynomial-time decidable:

$$
\{\langle\vec{x}, \vec{y}\rangle: \vec{x} \in \operatorname{dom}(f), \vec{y} \preccurlyeq f(\vec{x})\} \quad \text { where } \quad \vec{y} \preccurlyeq \vec{z}: \Leftrightarrow|\vec{y}|<|\vec{z}| \vee(|\vec{y}|=|\vec{z}| \wedge \operatorname{bin}(\vec{y}) \leq \operatorname{bin}(\vec{z}))
$$

c) If subgraph (f) is decidable in polynomial time and $|f(\vec{x})| \leq \mathcal{O}\left(|\vec{x}|^{k}\right)$ holds for some $k \in \mathbb{N}$ and all $\vec{x} \in \operatorname{dom}(f)$, then f can be computed in polynomial time.

EXERCISE 8:

Recall the algorithms discussed in the lecture for matrix multiplication in the so-called algebraic model: addition, multiplication, and division of arbitrary (nonzero) elements from the ground field are charged one step each. Fix $\omega \geq 2$ and prove:
a) If multiplication of upper triangular $n \times n$ matrices is possible in $\mathcal{O}\left(n^{\omega}\right)$ steps then so is multiplication of arbitrary $n \times n$-matrices.
b) If inverting non-singular upper triangular matrices is possible in $\mathcal{O}\left(n^{\omega}\right)$ steps then so is multiplication of arbitrary $n \times n$ matrices. Hint: Calculate the inverse of $\left(\begin{array}{ccc}I & A & 0 \\ 0 & I & B \\ 0 & 0 & I\end{array}\right)$

