Complexity Theory

WS 2011/2012, Exercise Sheet #1

EXERCISE 3:

Consider the DTM $\mathcal{M} = (Q, \Sigma, \Gamma, \delta)$ where $Q = \{s, q_1, q_2, q_3, q_+, q_-\}$, $\Sigma = \{0, 1\}$, $\Gamma = \Sigma \cup \{\triangleright, \sqcup\}$ and transition function $\delta : (Q \setminus \{q_-, q_+\}) \times \Gamma \to Q \times \Gamma \times \{\mathsf{L}, \mathsf{N}, \mathsf{R}\}$ as defined as follows:

Determine the sequence of direct successor configurations on \mathcal{M} on inputs 010101 and 0011. Which language does \mathcal{M} accept/decide?

EXERCISE 4:

- a) Formalize the DTM for PALIN from the lecture by specifying its transition function δ .
- b) Analyze its asymptotic running time.
- c) This DTM contains a bug: identify and correct the error!
- d) Using the 'programming techniques' from the lecture, describe semi-informally a DTM counting in binary the length of its input, i.e. computing the following function:

$$(x_1, \dots, x_n) \mapsto bin(n) \in \{0, 1\}^*, \text{ where } bin(\sum_{j=0}^{m-1} y_j 2^j + 2^m) := (y_0, y_1, \dots, y_{m-1}, 1)$$

Analyze its asymptotic running time and the length of the output.

e) Describe semi-informally a DTM deciding $\{0^n 1^n : n \in \mathbb{N}\} \subseteq \{0, 1\}^*$ in time $\mathcal{O}(n \cdot \log n)$.

EXERCISE 5:

- a) Let $\mathcal{M} = (Q, \Sigma, \Gamma, \delta)$ be a DTM and $\vec{w} \in \Sigma^*$. Prove: If \mathcal{M} visits, on input \vec{w} , at most s tape cells while making more than $s \cdot |Q| \cdot |\Gamma|^s$ steps, then \mathcal{M} runs indefinitely.
- b) Let \mathcal{M} be a DTM accepting $L \subseteq \Sigma^*$ in space $\mathcal{O}(s(n))$ where $s : \mathbb{N} \to \mathbb{N}$ is computable in time $2^{\mathcal{O}(s(n))}$. Describe a DTM \mathcal{N} deciding L in time $T_{\mathcal{N}}(\vec{w}) \leq 2^{\mathcal{O}(s(n))}$.