Nichtlineare Optimierung Rechnerübungsblatt

Fachbereich Mathematik Prof. Dr. Stefan Ulbrich Hannes Meinlschmidt

WS 2011-2012 25.11.2011

Rechnerübung

Aufgabe R1 (Powell-Wolfe-Schrittweitenregel)

Implementieren Sie Algorithmus 4 aus der Vorlesung zur Berechnung der Powell-Wolfe-Schrittweite. Erstellen Sie dazu eine Funktion

Ändern Sie Ihr Gradientenverfahren aus der ersten Übung so, dass bei der Wahl von stepsize = 2 die Powell-Wolfe-Schrittweite gewählt wird. Testen Sie Ihr Verfahren an den Funktionen aus der ersten Rechnerübung.

Aufgabe R2 (Globalisiertes Newton-Verfahren)

(a) Implementieren Sie das globalisierte Newton-Verfahren (Algorithmus 7 der Vorlesung) in Matlab. Verwenden Sie

$$B_k = I$$
, $c_1 = 10^{-3}$, $c_2 = 10^{-1}$ und $p = 1$.

Zur Schrittweitenbestimmung bietet sich Ihre Funktion armi jo aus der ersten Rechnerübung an. Beachten Sie, dass die Schrittweiten-Bestimmung nach Armijo für diesen Algorithmus mit $\gamma \in (0, 1/2)$ statt $\gamma \in (0, 1)$ aufgerufen werden soll (dies garantiert den Übergang zu schneller lokaler Konvergenz!).

Weiterhin müssen die aufgerufenen MATLAB-Funktionen fg, die die Funktionswerte und Gradienten der zu minimierenden Funktionen ausgeben, nun auch die Hessematrix liefern, d.h. [f,g,H] = fg(x) soll Funktionswert f, Gradient g und Hessematrix H der Funktion fg im Punkt x geben.

Verwenden Sie für Ihr Programm wieder einen Eingabeparameter maxit, so dass Ihr Verfahren spätestens nach maxit Iterationen abbricht.

(b) Testen Sie Ihr Programm an den Funktionen f_1 und f_2 aus der ersten Rechnerübung, sowie

$$f_4(x) = \frac{x^4}{4} - \frac{x^2}{2}$$
 mit Startwerten $x_0 \in \left\{ \pm 2, \pm 0.51, \pm \frac{1}{\sqrt{5}}, \pm \frac{1}{\sqrt{3}} \right\}$

Hausübung

Aufgabe H1 (Gauss-Newton-Verfahren)

(10 Punkte)

Algorithmus 7 aus der Vorlesung beschreibt die Globalisierung des Newton-Verfahrens für Minimierungsprobleme. Die Globalisierung des Newton-Verfahrens für *Gleichungssysteme* F(x) = 0 mit einer zwei mal stetig differenzierbaren Funktion $F: \mathbb{R}^n \to \mathbb{R}^n$ erfolgt üblicherweise auf Basis der Minimierung einer Energiefunktion für F, nämlich

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} F(x)^T F(x). \tag{1}$$

- (a) Bestimmen Sie die Newton-Gleichung von (1).
- (b) Im Gauss-Newton-Verfahren bestimmt man die Suchrichtung s_k als Lösung der Gauss-Newton Gleichung

$$F'(x_k)^T F'(x_k) s_k = -F'(x_k)^T F(x_k). \tag{GN}$$

Welcher Term wurde hier im Vergleich mit der Newton-Gleichung für (1) vernachlässigt? Zeigen Sie, dass die Gauss-Newton-Gleichung (GN) zur klassischen Newton-Gleichung für F(x) = 0 äquivalent ist, wenn $F'(x_k)$ invertierbar ist.

- (c) Sei \bar{x} eine Nullstelle von F und $F'(\bar{x})$ invertierbar. Zeigen Sie, dass (GN) auf ein Newton-artiges Verfahren für das Problem (1) führt, welches für $x_k \to \bar{x}$ die Dennis-Moré-Bedingung erfüllt.
- (d) Verwendet man das globalisierte Newton-artige Verfahren (Algorithmus 10 in der Vorlesung) für (1) mit der Matrix $M_k = F'(x_k)^T F'(x_k)$, so nennt man das Verfahren globalisiertes Gauss-Newton-Verfahren.

Die Niveaumenge $N_f(x_0)$ zum Startpunkt x_0 sei kompakt. Zeigen Sie mit Sätzen aus der Vorlesung:

- i. Jeder Häufungspunkt \bar{x} von (x_k) erfüllt $F'(\bar{x})^T F(\bar{x}) = 0$. Ist $F'(\bar{x})$ invertierbar, so gilt zudem $F(\bar{x}) = 0$.
- ii. Hat (x_k) einen Häufungspunkt \bar{x} , in dem $F'(\bar{x})$ invertierbar ist, dann konvergiert (x_k) Q-superlinear gegen \bar{x} . Ist F' lokal Lipschitz-stetig, so ist die Konvergenz sogar Q-quadratisch.

Aufgabe H2 (CG-Verfahren, oder: Verfahren der konjugierten Gradienten) Gegeben sei die quadratische Funktion (10 Punkte)

$$q: \mathbb{R}^n \to \mathbb{R}: y \mapsto c^T y + \frac{1}{2} y^T C y$$

mit $c \in \mathbb{R}^n$ und $C \in \mathbb{R}^{n,n}$ symmetrisch so, dass q streng konvex ist.

Zur Bestimmung des eindeutigen globalen Minimums von q betrachten wir folgenden Algorithmus 1:

Algorithmus 1: Verfahren der konjugierten Gradienten

- 1 Wähle y_0 und berechne $g_0 := c + Cy_0$;
- 2 **if** $g_0 = 0$ **then**
- $_3$ STOP mit Ergebnis y_0 .
- 4 else
- Setze $k \leftarrow 0$ und $d_0 = g_0$;
- 6 end
- Berechne $\alpha_k := \frac{g_k^T g_k}{d_k^T C d_k};$
- 8 Setze $y_{k+1} := y_k a_k d_k$ sowie $g_{k+1} := g_k a_k C d_k$;
- 9 **if** $g_{k+1} = 0$ **then**
- 10 STOP mit Ergebnis y_{k+1} .
- 11 **end**
- Berechne $\beta_k := \frac{g_{k+1}^T g_{k+1}}{g_k^T g_k};$
- 13 Setze $d_{k+1} := g_{k+1} + \beta_k d_k$;
- 14 Setze $k \leftarrow k + 1$ und gehe zu 7.

Sei V_{k+1} definiert als Span $\{g_0, Cg_0, \dots, C^kg_0\}$. Zeigen Sie:

- (a) Solange $g_k \neq 0$ ist, gilt:
 - i. $d_k \neq 0$,
 - ii. $V_{k+1} = \text{Span}\{g_0, \dots, g_k\} = \text{Span}\{d_0, \dots, d_k\},$
 - iii. die Vektoren $d_0, \dots d_k$ sind paarweise C-konjugiert, d.h.

$$d_i^T C d_j = 0$$
 für alle $i, j \in \{0, ..., k\}$ mit $i \neq j$,

iv. g_{k+1} ist orthogonal zum Unterraum V_{k+1} , also $g_{k+1} \perp V_{k+1}$.

Hinweis: Gehen Sie induktiv vor und behalten Sie den Überblick.

(b) Es gilt $q(y_{k+1}) = \min_{y \in V_{k+1}} q(y_0 + y)$ und das Verfahren berechnet in höchstens n Schritten das globale Minimum von q.

Hinweis: Betrachten Sie $\{d_0, \ldots, d_k\}$ als Basis von V_{k+1} und formulieren Sie das Minimierungsproblem auf dem Unterraum um in ein Minimierungsproblem über \mathbb{R}^m für ein geeignetes m. Nutzen Sie dann die Konstruktion der y_k aus dem Algorithmus und die in (a) bewiesenen Eigenschaften.