Introduction to **Mathematical Software Exercise 8**

PD Dr. Ulf Lorenz Dipl.-Math. Thomas Opfer

Problem 1 Binary Representation

Find a Maple-method that converts a decimal representation of a number to the corresponding binary representation. Convert the following decimal numbers to their binary equivalent:

- a) 42
- b) 0.5
- c) 420!
- d) -3.75

Problem 2 Prime Numbers

Use nextprime to generate a prime with 5 digits, a prime with 10 digits and a prime with 50 digits.

Problem 3 Procedures

Write a procedure that for $n \in \mathbb{N}$ returns "number has one digit" if $0 \le n \le 9$, "number has two digits" if $10 \le n \le 99$, "number has three digits" if $100 \le n \le 999$ and "number has more then three digits" otherwise.

Problem 4 Animation

Use the animate-function from the plots-package to plot sin(x + t) for $x \in [0, 15]$. As time passes, t shall go from 0 to $4 \cdot \pi$.

Problem 5 Piecewise Definition of a Function

Use piecewise to define the following function:

 $f(x) = \begin{cases} 0 & \text{für } x < -5 \\ x + 5 & \text{für } -5 \le x < -3 \\ 1 + \frac{1}{9} \cdot x^2 & \text{für } -3 \le x < 3 \\ 5 - x & \text{für } 3 \le x < 5 \\ 0 & \text{für } 5 \le x \end{cases}$ für x < -5für 5 < x

Plot f(x) for $x \in [-6, 6]$. Ensure that both axes have the same scaling.

Winter Term 2011/2012 Week: 30.01.2012 - 03.02.2012

TECHNISCHE

UNIVERSITÄT DARMSTADT

☆☆★

☆★★

☆☆★

☆★★