Introduction to Mathematical Software Exercise 7

Problem 1 Integration

Find an antiderivative of $f(x)=\tan (x) \cdot \sin (x)$ ．

Problem 2 Solving Equations Numerically
 気完

Find an approximate solution of $x^{2}=\sin (x)$ in the interval $\left[\frac{1}{2}, 1\right]$ ．
Problem 3 Procedures：Digit Sum

Write a procedure that returns the digit sum of a given natural number n ．

Problem 4 Procedures：Perfect Numbers

ふ甘
A natural number is called perfect if it is equal to the sum of its proper divisors，e．g． $6=1+2+3$ ．Write a procedure that returns the first n perfect numbers as a list．Test your procedure for all $n \in\{1,2,3,4\}$ ．

Problem 5 Mandelbrot Set

＊＊
The Mandelbrot set is the set of complex numbers $c \in \mathbb{C}$ for which the sequence $z_{0}, z_{1}, z_{2}, \ldots$ with $z_{0}=0$ and $z_{n+1}=z_{n}^{2}+c$ is bounded．
Hint：To solve this exercise，it might be helpful to have a look at the solution of the image processing exercise．
a）Use the Create－command from the ImageTools－package to create an image img with height 201，width 301 and background color white．
b）Write a function t that maps the pixel (x, y) to the complex number $\left(\frac{1}{100} \cdot x-\frac{201}{100}\right)+\left(\frac{-1}{100} \cdot y+\frac{101}{100}\right) \cdot I$ ．（This is done for scaling purposes．）Verify that $t(1,1)=-2+I, t(301,201)=1-I$ and $t(201,101)=0$ ．
c）Write a procedure m that checks if the series $z_{0}, z_{1}, z_{2}, \ldots$ is bounded for a given complex number c ．Initialize z_{0} with 0.0 to disable slow exact arithmetic．Do 50 iterations．Return 1 if the absolute value of an element of the series is greater than 50 ，otherwise return 0 ．
d）Colorize all pixels (x, y) in the following way： $\operatorname{img}[y, x]:=m(t(x, y))$ ．
（Remark： 1 means white， 0 means black．For images，the first index is y ．）
e）Have a look at the image using the View－command．

