Introduction to
 Mathematical Software Exercise 3

Winter Term 2011／2012

Dipl．－Math．Thomas Opfer
Week：14．11．2011－18．11．2011

Problem 1 Curve Fitting

In the first exercise，you explored the growth of a Goron．The biologist has done some measurements and wants to improve the parameters．The model function is：

$$
f(x)=\frac{2500 \cdot \mathrm{e}^{\frac{a}{100} \cdot x}}{b+\mathrm{e}^{\frac{a}{100} \cdot x}}
$$

The results of the measurements are：

x	90	180	270	360	450	540	630	720
$\mathrm{f}(\mathrm{x})$	299,72	723,33	1178,98	1711,08	2161,69	2260,98	2418,65	2502,74

Find appropriate parameters a and b ．Make a plot．
Hint：Have a look at the notes of the first lecture．

Problem 2 Systems of Equations

Solve the following（non－linear）system of equations for x and y ：

$$
\begin{aligned}
x^{2}+y^{2} & =16 \\
x+y & =p
\end{aligned}
$$

Check help topic solve，details to find out how the parameter Explicit can help you to display the solutions in a convenient way．
Problem 3 Procedures

Write a procedure that successively prints all natural numbers from 1 to n to screen．
Problem 4 Sequences 今母
a）Check what sequences do in Maple．Find out what the following inputs do．
1）$a:=3,4,5$ ；
2） $\mathrm{b}:=$ NULL $, 1,9$ ；
3）$c:=a, b$ ；
4） $\mathrm{c}:=\mathrm{c}, 42$ ；
Hint：NULL is the empty sequence．
b）Write a Maple procedure that lists all factorials that are less than a given natural number．
Example：input：7，output：［1，2，6］．
Hint：Remember that loops may have the following form：for \ldots while \ldots do ．．．end do．

Problem 5 Polynomials

今世

For this exercise you may assume that the method maxima shall only be applied to polynomials.
a) As a preliminary consideration compare the results of the following inputs:
i) if $\sqrt{4}>0$ then 1 else 0 end;
ii) if $\sqrt{3}>0$ then 1 else 0 end;
iii) if $i s(\sqrt{4}>0)$ then 1 else 0 end;
iv) if $i s(\sqrt{3}>0)$ then 1 else 0 end;
b) Modify the procedure maxima so that it returns a list of all maximum points.
c) Modify the procedure so that it returns exact maximal positions for polynomials of degree ≤ 5. Return numerical maximal positions for polynomials of higher degree.
d) For certain polynomials (e.g. $f(x)=x^{4}$) the method from c) does not work correctly. Fix this problem at least for polynomials of degree ≤ 5 by checking derivatives of higher order.
e) Test your method with the following functions:
i) $g(x)=-x^{4}$
ii) $h(x)=-x^{4}-x^{3}+10 \cdot x^{2}+3$
f) Can you imagine why we only do exact calculations for polynomials of degree ≤ 5 ?

Problem 6 An Application: Image Processing (Part 2)

f) Open the Maple document that you saved last week. Press the "!!!"-button in order to make Maple aware of all your former inputs.
g) Rotate your monochrome picture by 90° counterclockwise using the Rotate-command. Take a look at the result.
h) Create a new image with the same dimensions as the rotated image. Write a (nested) loop that colors your image in a chessboard pattern. Hint: Helpful commands: Create, Height, Width.
i) We want to reduce the noise in our image using the so-called median-filter. Create a new image with the same dimensions as the rotated image. Do not modify the pixels of the original image! In the new Image, we set all inner pixels to the median of the original pixel and the 8 pixels around it. (This may take some seconds.) You can calculate the median by applying the Statistics [Median]-command to a list of these 9 pixels. Of course this does not work for the border-pixels of the image. For this exercise, it is perfectly ok to ignore them completely. Again, take a look at the result to see whether the filter worked as intended.
j) Save the file. This exercise will be continued next week.

