Klausurvorbereitungskurs Analysis I Stetigkeit / Differenzierbarkeit

Tristan Alex Miroslav Vržina (alex@mathematik.tu-darmstadt.de) (vrzina@mathematik.tu-darmstadt.de)

Definitionen

- Folgenkriterium: für **jede** Folge $x_n \to x$ gilt $f(x_n) \to f(x)$.
- Unstetigkeit in x_0 : finde eine Folge $x_n \to x_0$, so dass $f(x_n)$ nicht gegen $f(x_0)$ konvergiert.
- ε - δ -Kriterium: $\forall \varepsilon > 0 \ \exists \delta > 0 \dots$
- Unstetigkeit: finde ein ε , zu dem es kein passendes δ gibt.
- Differenzenquotient für Differenzierbarkeit
- Gleichmäßige Stetigkeit und Lipschitz-Stetigkeit

Eigenschaften stetiger Funktionen

- $f: I \to \mathbb{R}$ stetig, I beschränkt und abgeschlossen $\Rightarrow f$ nimmt Max und Min an!
- $f: I \to \mathbb{R}$ stetig, I beschränkt und abgeschlossen $\Rightarrow f$ gleichmäßig stetig.
- Zwischenwertsatz

Eigenschaften differenzierbarer Funktionen

- Differenzierbar ⇒ stetig, nicht umgekehrt.
- Ableitung = beste lineare Approximation = Steigung.
- Mittelwertsatz

Sorten von Stetigkeit

- Lipschitz \Rightarrow gleichmäßig \Rightarrow stetig.
- Ist f differenzierbar mit |f'(x)| beschränkt $\Rightarrow f$ Lipschitz.
- Häufiger Trick für gleichmäßige Stetigkeit: Ableitung außerhalb eines kompakten Intervalls beschränkt.