Lineare Algebra 1 3. Exkurs Alternativen zum Gauß-Verfahren

TECHNISCHE UNIVERSITÄT DARMSTADT

Prof. Dr. A. Kollross Dirk Schröder Fachbereich Mathematik 15. Dezember 2011

In diesem Exkurs soll das lineare Gleichungssystem Ax = b mit einer Matrix $A \in \mathbb{R}^{n \times n}$ und einem Vektor $b \in \mathbb{R}^n$ betrachtet werden. Die Lösung des Gleichungssystems sei mit x^* bezeichnet.

Aufgabe 1 Krylovräume

Definition: Der k-te Krylov-Raum zu einer gegebenen Matrix $A \in \mathbb{R}^{n \times n}$ und einem Vektor $b \in \mathbb{R}^n$ ist gegeben durch

$$\mathcal{K}_k(b,A) := \operatorname{span}\{b,Ab,A^2b,\ldots,A^{k-1}b\}.$$

Zeigen Sie, dass mit dieser Definition die folgenden Aussagen äquivalent sind:

- a) Die Vektoren $b, Ab, ..., A^kb$ sind linear abhängig.
- b) Es ist $\mathcal{K}_k(b,A) = \mathcal{K}_{k+1}(b,A)$.
- c) Es gilt $A\mathcal{K}_k(b,A) \subseteq \mathcal{K}_k(b,A)$, d.h. $\mathcal{K}_k(b,A)$ ist ein A-invarianter Unterraum.
- d) Es ist $x^* \in \mathcal{K}_k(b,A)$.

Es bezeichne $x_0 \in \mathbb{R}$ einen beliebigen Vektor. Das Residuum r_0 ist dann definiert als $r_0 := b - Ax_0$. Zeigen Sie die wichtige Folgerung:

Ist $k \in \mathbb{N}$ *der kleinste Index mit*

$$\mathcal{K}_0(r_0,A) \subsetneq \mathcal{K}_1(r_0,A) \subsetneq \cdots \subsetneq \mathcal{K}_k(r_0,A) = \mathcal{K}_{k+1}(r_0,A) \quad (hierbei \ ist \ \mathcal{K}_0(r_0,A) := \{0\}),$$

so liegt die Lösung x^* bereits in dem affinen Raum $x_0 + \mathcal{K}_k(r_0, A)$.

Aufgabe 2 GMRES

Jetzt sollen die Krylov-Räume genutzt werden um eine andere Methode zum Lösen des linearen Gleichungssystems Ax = b zu finden. Dazu sei $||\cdot||$ die euklidische Vektornorm im \mathbb{R}^n und $B \in \mathbb{R}^{n \times n}$ eine reguläre, d.h. invertierbare, Matrix. Dann wird durch

$$||x||_B := ||Bx|| \text{ für } x \in \mathbb{R}^n$$

1

eine neue Vektornorm im \mathbb{R}^n definiert. Für die Lösung x^* des Gleichungssystems gilt offensichtlich $||b-Ax^*||_B=0$, anders gesagt verschwindet für die Lösung das Residuum. Offenbar ist die Lösung des linearen Gleichungssystems Ax=b äquivalent zur Minimierung des Residuums

minimiere
$$\frac{1}{2}||b-Ax||_B^2$$
, $x \in \mathbb{R}^n$.

Eine Optimierung über dem gesamten *n*-dimensionalen Raum kann sehr aufwendig sein. Die Idee der *Generalized Minimal RESiduum-*Verfahren, kurz *GMRES-*Verfahren, ist nur in Krylov-Räumen die Lösung zu suchen. Im *k*-ten Iterationsschritt wird nur das folgende *k*-dimensionale Optimierungsproblem betrachtet:

minimiere
$$\frac{1}{2}||b-Ax||_B^2$$
, $x \in x_0 + \mathcal{K}_k(r_0, A)$,

wobei $x_0 \in \mathbb{R}^n$ ein beliebiger Startvektor ist und $r_0 := b - Ax_0$ das zugehörige Residuum.

Insgesamt ergibt sich also der folgende Algorithmus zum Lösen des linearen Gleichungssystems Ax = b:

Algorithmus GMRES: Wähle einen Startvektor $x_0 \in \mathbb{R}^n$, eine reguläre Matrix $B \in \mathbb{R}^{n \times n}$ und setze $r_0 := b - Ax_0$.

Für
$$k = 1, 2, ...$$
:

Bestimme
$$x_k \in \mathbb{R}^n$$
 als Lösung von minimiere $\frac{1}{2}||b-Ax||_B^2$, $x \in x_0 + \mathcal{K}_k(r_0, A)$.

Wieviele Iterationsschritte benötigt der Algorithmus maximal um die Lösung des linearen Gleichungssystems zu finden?

Wichtige Aspekte des Verfahrens sind die Wahl der Matrix B und die Lösungsmethode der Optimierungsprobleme. Für das konjugierte Gradientenverfahren, kurz CG-Verfahren, ist bspw. $B = A^{-\frac{1}{2}}$.

Literaturhinweis: Christian Kanzow - Numerik linearer Gleichungssystems, Springer (2004).