Lineare Algebra 1 4. Übungsblatt

Fachbereich Mathematik Prof. Dr. A. Kollross WS 2011/2012 10.11.2011

K. Schwieger

Gruppenübung

Aufgabe G1

Seien G, H Gruppen und $f:G\to H$ ein Gruppenhomomorphismus. Zeigen Sie, dass die folgenden Aussagen äquivalent sind:

(a) *f* ist injektiv.

(b) Der Kern von *f* ist trivial, d.h. $f^{-1}(\{e_H\}) = \{e_G\}$.

Aufgabe G2

Seien S_1 , S_2 zwei Halbgruppen. Zeigen Sie: Für einen bijektiven Homomorphismus $f:S_1\to S_2$ ist die Umkehrabbildung wieder ein Homomorphismus.

Aufgabe G3 (Fingerübungen)

Sei R ein Ring, sodass mit $a^2 = a$ für jedes $a \in R$. Zeigen Sie:

- (a) a + a = 0 für alle $a \in R$.
- (b) *R* ist kommutativ.
- (c) Hat R eine Eins, so ist jedes Element $a \neq 1$ ein Nullteiler.

Hinweis: Für $a, b \in R$ betrachten Sie das Element $(a + b)^2$.

Aufgabe G4

Sei G ein Gruppe. Zeigen Sie: Für eine nicht-leere Teilmenge $H \subseteq G$ sind äquivalent:

(a) *H* ist eine Untergruppe von *G*.

(b) Für alle $a, b \in H$ gilt auch $ab^{-1} \in H$.

Hausübung

Aufgabe H1 (Untergruppen von \mathbb{Z})

(4 Punkte)

Wir betrachten die Gruppe $(\mathbb{Z}, +)$.

- (a) Zeigen Sie, dass für jedes $k \in \mathbb{Z}$ die Menge $k\mathbb{Z} := \{kn \mid n \in \mathbb{Z}\}$ eine Untergruppe ist.
- (b) Zeigen Sie, dass jede Untergruppe von $(\mathbb{Z}, +)$ von dieser Form ist.

Aufgabe H2 (Translationen und Konjugationen)

(4 Punkte)

Sei G eine Gruppe. Wir bezeichnen mit S(G) die Menge der Permutationen (bijektiven Selbstabbildungen) von G.

- (a) (Ohne Wertung) Machen Sie sich klar, dass S(G) eine Gruppe bezüglich der Komposition von Abbildungen ist. Was ist das neutrale Element?
- (b) Für ein Element $g \in G$ betrachten wir die Abbildung $\lambda_g : G \to G, \ \lambda_g(x) := gx.$ Zeigen Sie:
 - i. λ_g ist bijektiv. Was ist die Umkehrabbildung λ_g^{-1} ?
 - ii. Die Abbildung $\lambda:G\to S(G),\ g\mapsto \lambda_g$ ist ein injektiver Gruppenhomomorphismus.

Die Abbildung λ_g heißt auch Linkstranslationen um g. Der Homomorphismus $g\mapsto \lambda_g$ heißt auch die linksreguläre Darstellung von G.

- (c) Für eine Element $g \in G$ betrachten wir die Abbildung $\varphi_g : G \to G$, $\varphi_g(x) := gxg^{-1}$. Zeigen Sie:
 - i. φ_g ist ein Automorphismus. Was ist die Umkehrabbildung φ_g^{-1} ?
 - ii. Die Abbildung $\varphi:G\to S(G),\ g\mapsto \varphi_g$ ist ein Gruppenhomomorphismus. Wann ist dies Abbildung injektiv?

Die Abbildung φ_g heißt auch Konjugation mit g. Der Homomorphismus $g \mapsto \varphi_g$ heißt oft auch die adjunkte Darstellung oder adjungierte Darstellung von G.

Aufgabe H3 (Erzeugte Untergruppen)

(4 Punkte)

Sei *G* eine beliebige Gruppe.

- (a) Zeigen Sie: Beliebige Schnitte von Untergruppen sind wieder Untergruppen. Genauer: Sei $(G_i)_{i \in I}$ eine Familie von Untergruppen $G_i \subseteq G$. Dann ist auch der Schnitt $\bigcap_{i \in I} G_i$ eine Untergruppe von G.
- (b) Sei $S \neq \emptyset$ eine beliebige Teilmenge. Wir bezeichnen mit $\langle S \rangle$ den Schnitt über alle Untergruppen $H \subseteq G$ mit $S \subseteq H$:

$$\langle S \rangle := \bigcap_{S \subseteq H \subseteq G \text{ Untergruppe}} H.$$

Zeigen Sie mit Hilfe von (a):

- i. $\langle S \rangle$ ist eine Untergruppe von G mit $S \subseteq \langle S \rangle$.
- ii. Für jede Untergruppe $H \subseteq G$ mit $S \subseteq H$ gilt $\langle S \rangle \subseteq H$.

Das heißt $\langle S \rangle$ ist die kleinste Untergruppe von G, die S enthält. Die Menge $\langle S \rangle$ heißt die von S erzeugte Untergruppe.

(c) Zeigen Sie, dass $\langle S \rangle$ genau aus den Produkten von Elementen von S und deren Inversen besteht, d.h.

$$\langle S \rangle = \{ g_1 g_2 \dots g_n \mid n \in \mathbb{N}, \ \forall 1 \le k \le n. \ g_k \in S \ \text{oder} \ g_k^{-1} \in S \} \ .$$