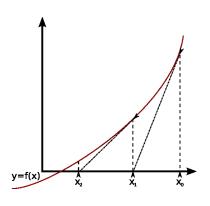
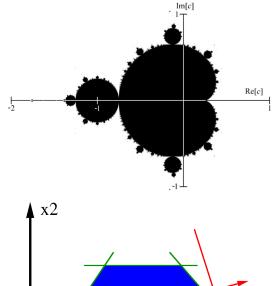
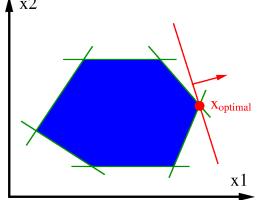
BSS-Rechenmodell Einführung

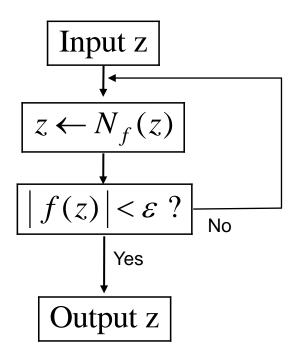
Seminar Reelle Komplexität

Yevgen Chebotar







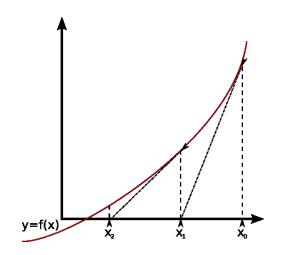


Gliederung

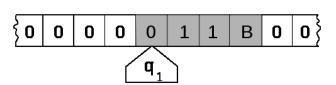
- 1. Motivation
- 2. Beispielprobleme
 - 2.1 Mandelbrot-Menge
 - 2.2 Newton-Verfahren
 - 2.3 Rucksackproblem
 - 2.4 Hilbert-Nullstellensatz
 - 2.5 Lineare Programmierung
- 3. Komplexitätstheorie in der Numerik
- 4. Endlich-dimensionales Modell

1. Motivation

- Wissenschaft: Reelle Algorithmen
 - Newton
 - Euler
 - Gauss etc.



- Turing Maschine
 - Unzulänglich für reelle Berechnungen
 - Beispiel: Gleichheit zwei reellen Zahlen 2 == 2,000.....001 ??
 - → notwendig für viele Probleme



1. Motivation

- Formale Logik
 - 1/0 Alles-oder-nichts Konzept → starr, schwierig im Umgang
 - Kombinatorik
- Analysis
 - Sehr erfolgreich in der Mathematik
 - Weitentwickelt
- → Neue Theorie für reelle Berechnungen
 - Blum-Shub-Smale Maschine
 - Turingtheorie: spezieller Fall

Re[c]

Im[c]

Betrachten wir:

$$p_c(z) = z^2 + c, \ c \in \mathbb{C}$$

n-mal angewendet:

$$p_c^n(z) = p_c(...p_c(p_c(p_c(z))))$$

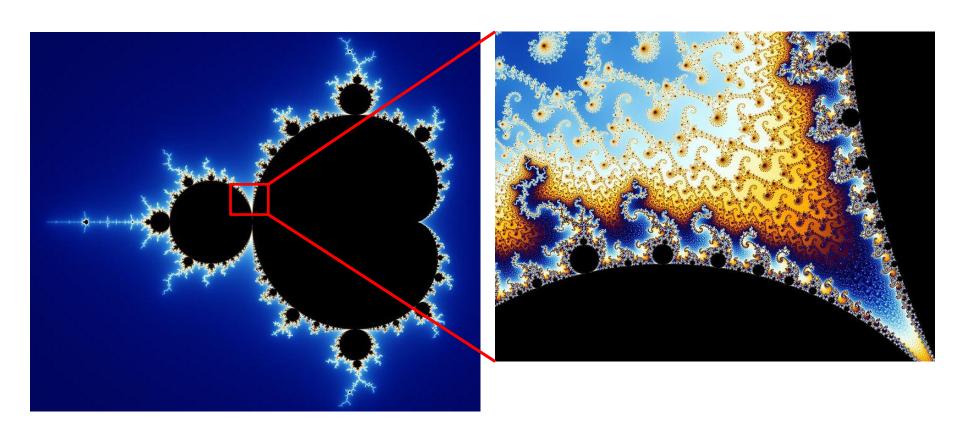
Für z = 0:

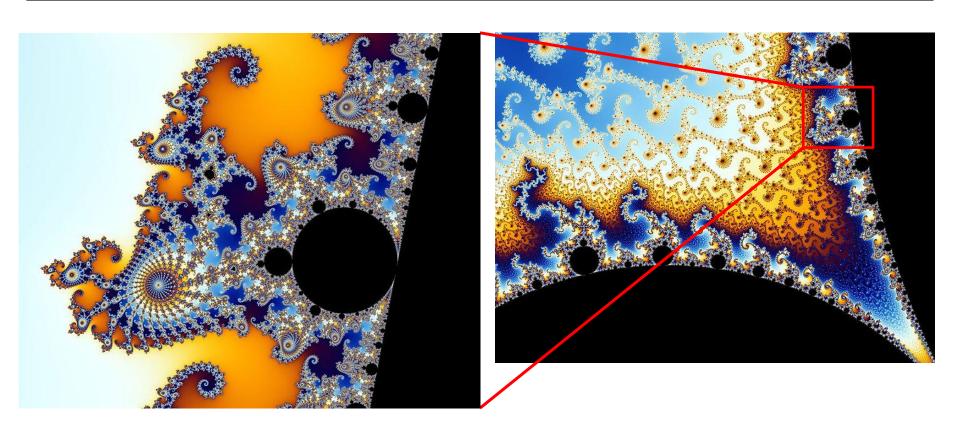
$$p_c(0) = c$$
, $p_c^2(0) = c^2 + c$, $p_c^3(0) = (c^2 + c)^2 + c$, ...

Mandelbrot-Menge: $c, c^2 + c, (c^2 + c)^2 + c, \dots$ beschränkt

$$\mathbf{M} = \{ c \in \mathbb{C} \mid \exists s \in \mathbb{R} \, \forall n \in \mathbb{N} \, | \, p_c^n(0) | \leq s \, \}$$

Komplement:
$$\mathbf{M}' = \{ c \in \mathbb{C} \mid p_c^n(0) \to \infty \text{ für } n \to \infty \}$$





Roger Penrose: Ist Mandelbrot-Set entscheidbar?

Probleme:

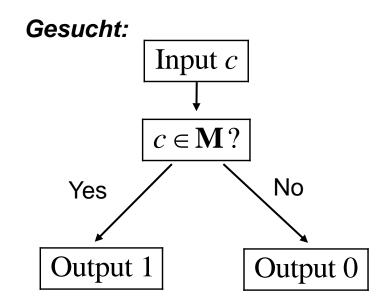
Klassische Theorie:

Menge nicht abzählbar

Recursive Analysis:

Gleichheit/Vergleich von reellen Zahlen

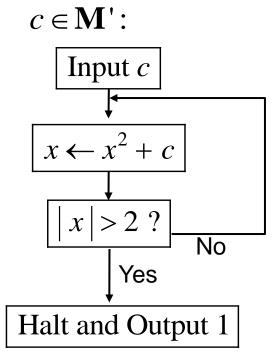
Neues Modell: Algebraische Maschine



Ist Mandelbrot-Set entscheidbar?

Eigenschaft: $\exists m \in \mathbb{N} | p_c^m(0)| > 2$, dann $p_c^n(0) \to \infty$ für $n \to \infty$

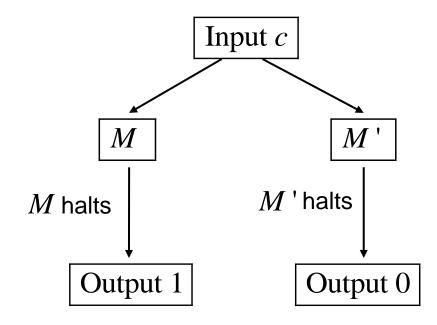
- M' semi-entscheidbar
- M auch?



Ist Mandelbrot-Set entscheidbar?

Eigenschaft: $\exists m \in \mathbb{N} | p_c^m(0)| > 2$, dann $p_c^n(0) \to \infty$ für $n \to \infty$

- M' semi-entscheidbar
- M auch?



Nullstellen-Suchalgorithmus

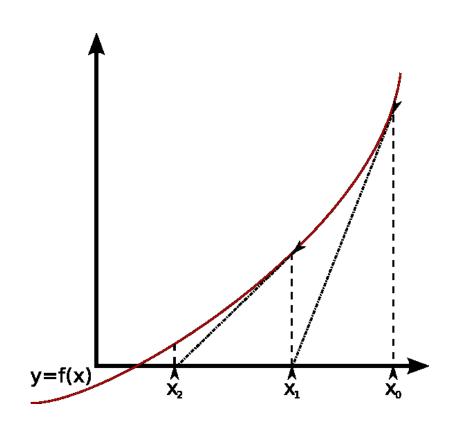
$$N_f:\mathbb{C}\to\mathbb{C}$$

$$N_f(z) = z - \frac{f(z)}{f'(z)}, \ f'(z) \neq 0$$

Auswahl von Startpunkt: $z_0 \in \mathbb{C}$

$$z_{k+1} = N_f(z_k) = N_f^{k+1}(z_0)$$

Abbruchregel: $|f(z_k)| < \varepsilon$



Nullstellen-Suchalgorithmus

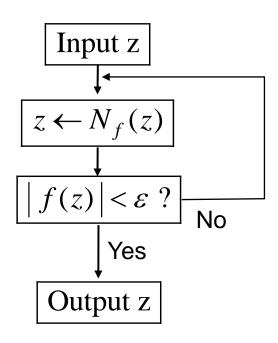
$$N_f:\mathbb{C}\to\mathbb{C}$$

$$N_f(z) = z - \frac{f(z)}{f'(z)}, \ f'(z) \neq 0$$

Auswahl von Startpunkt: $z_0 \in \mathbb{C}$

$$z_{k+1} = N_f(z_k) = N_f^{k+1}(z_0)$$

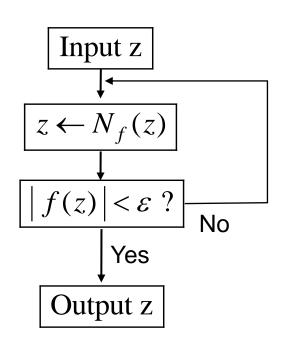
Abbruchregel: $|f(z_k)| < \varepsilon$



$$N_f(z) = z - \frac{f(z)}{f'(z)}$$

1)
$$f(\zeta) = 0$$
 gdw. $N_f(\zeta) = \zeta$
 \rightarrow Fixpunkt

2)
$$N_f(\zeta) = \zeta \rightarrow \left| N_f'(\zeta) \right| < 1$$
 \rightarrow Fixpunkt ist anziehend

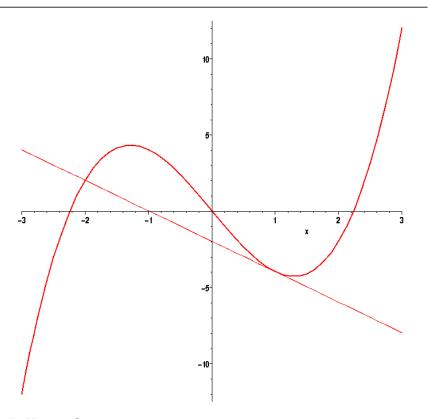


 ζ einfache Nullstelle von $f \to N_f'(\zeta) = 0 \to \zeta$ super-anziehend

→ Quadratische Konvergenz

Nicht immer konvergent

- Anziehende periodische Punkte
- Guter Startpunkt: N_f konvergiert zur Nullstelle

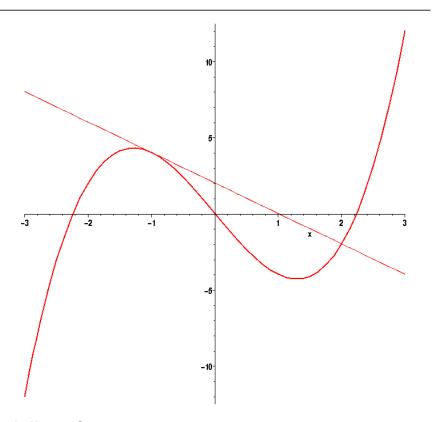


Entscheidungsproblem:

Menge von guten Startpunkten entscheidbar?

Nicht immer konvergent

- Anziehende periodische Punkte
- Guter Startpunkt: N_f konvergiert zur Nullstelle



Entscheidungsproblem:

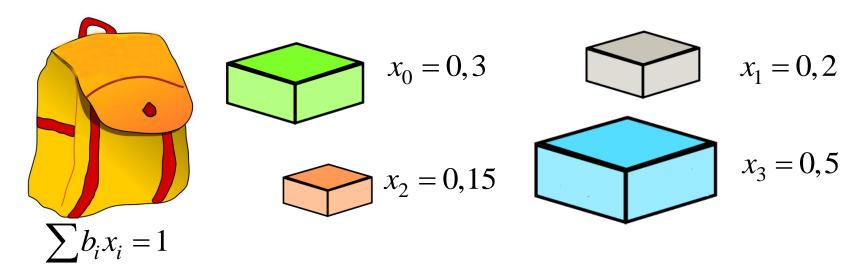
Menge von guten Startpunkten entscheidbar?

2.3. Rucksackproblem

R - Kommutativer Ring mit Einheit ($\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$)

$$K_n = \{ x \in \mathbb{R}^n \mid \exists b \in \{0, 1\}^n \text{ so dass } \sum b_i x_i = 1 \}$$

$$b = 1101$$
 - Gültige Belegung $\rightarrow x = (x_0, x_1, x_2, x_3) \in K_n$



2.3. Rucksackproblem

$$K_n = \{ x \in \mathbb{R}^n \mid \exists b \in \{0, 1\}^n \text{ so dass } \sum b_i x_i = 1 \}$$

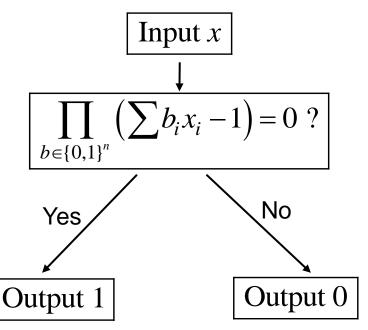
- Durch Aufzählung lösbar (max. $2^n 1$ Schritte)
- Entscheidbar

Algebraischer Ansatz

$$k_n(x) = \prod_{b \in \{0,1\}^n} \left(\sum b_i x_i - 1 \right)$$

$$V_{k_n} = \{ x \in R^n \mid k_n(x) = 0 \}$$

$$\rightarrow V_{k_n} = K_n$$



2.4. Hilbert Nullstellensatz

Polynome $f_1,...,f_k$ über $\mathbb C$ mit n Variablen

Entscheidungsproblem HN/\mathbb{C} :

Gibt es eine gemeinsame Nullstelle?

Gesucht: Algebraischer Algorithmus

• \mathbb{C} nicht geordnet \rightarrow Vergleich auf Gleichheit

2.4. Hilbert Nullstellensatz

Komplexitätsbetrachtung

Eingabe: Koeffizienten von f_i in \mathbb{C}^N

Eingabegröße S(f): Anzahl aller Koeffizienten

$$N = \sum_{i=1}^{k} {n+d_i \choose n}, \quad d = \deg f_i, \quad i = 1, ..., k$$

Komplexitätsmaß: Anzahl von arithmetischen Operationen A(f)

2.4. Hilbert Nullstellensatz

Eigenschaft

Es existieren Polynome $g_1,...,g_k$ so dass $\sum_{i=1}^{k}g_if_i=1$

 $\rightarrow f_1,...,f_k$ keine gemeinsame Nullstelle i=1

Suche nach Koeffizienten für g_i : Gauß-Eliminationsverfahren

 \rightarrow **Exponentiell** in S(f)

Vermutung: Es gibt keinen Algorithmus mit $A(f) \le S(f)^c$

Aber: $\zeta \in \mathbb{C}^n$ gegeben, wir können testen $f_i(\zeta) = 0$ für i = 1, ..., k

→ Testen in polynomieller Zeit

 HN/\mathbb{C} : **NP**-vollständing in \mathbb{C}

Ist $\mathbf{P} \neq \mathbf{NP}$ in \mathbb{C} ?

→ Klassische Komplexitätsprobleme mit neuen Werkzeugen

Lineare Programmierung:

m Ungleichungen

$$A_i x \ge b_i, \ i = 1, ..., m$$

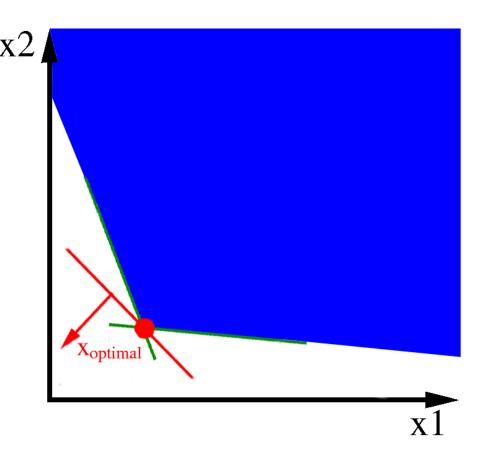
$$A_i x = \sum_{j=1}^n a_{ij} x_{j, a_{ij}} \in \mathbb{R}, b_i \in \mathbb{R}$$

Gibt es einen passenden $x \in \mathbb{R}^n$?

Optimisierung

Minimisiere $c \cdot x$, $c \in \mathbb{R}$ unter Beachtung von $A_i x \ge b_i$

Alternativ: Maximisierung



Lineare Programmierung:

m Ungleichungen

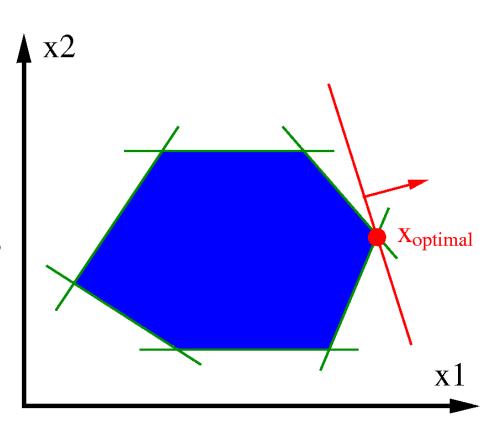
$$A_i x \ge b_i, \ i = 1, ..., m$$

$$A_i x = \sum_{j=1}^n a_{ij} x_{j, a_{ij}} \in \mathbb{R}, b_i \in \mathbb{R}$$

Gibt es einen passenden $x \in \mathbb{R}^n$?

Optimisierung

Minimisiere $c \cdot x, c \in \mathbb{R}$ unter Beachtung von $A_i x \ge b_i$



Alternativ: Maximisierung

Integer Programmierung:

m Ungleichungen

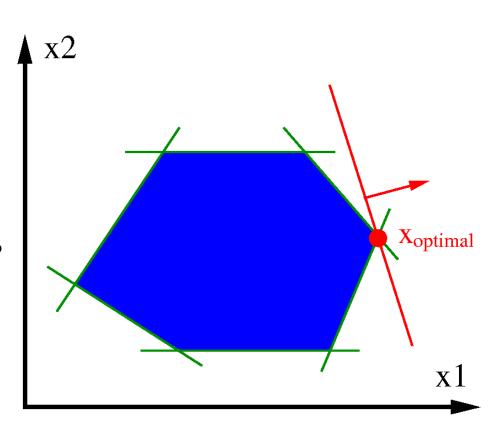
$$A_i x \ge b_i, \ i = 1,...,m$$

$$A_i x = \sum_{j=1}^n a_{ij} x_{j, a_{ij}} \in \mathbb{Z}, b_i \in \mathbb{Z}$$

Gibt es einen passenden $x \in \mathbb{Z}^n$?

Optimisierung

Minimisiere $c \cdot x$, $c \in \mathbb{Z}$ unter Beachtung von $A_i x \ge b_i$



Alternativ: Maximisierung

Komplexitätsbetrachtung

Eingabe:
$$A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$$
 Optimisierung: $c \in \mathbb{R}^n$

Eingabegröße: S(A,b) = mn + m **Optimisierung:** S(A,b,c) = mn + m + n

Kosten: Anzahl der algebraischen Operationen A(A,b) bzw. A(A,b,c)

Kein Algorithmus bekannt mit

$$A(A,b) \le S(A,b)^d$$

$$A(A,b,c) \le S(A,b,c)^d$$

Komplexitätsbetrachtung – Integer Programmierung

Eingabe: $A \in \mathbb{Z}^{m \times n}, b \in \mathbb{Z}^m$

Binäre Länge von Integer(height): $ht(x) = |\log(|x|+1)|$

Eingabegröße $S_{ht}(A,b)$: S(A,b) mal maximale ht(x) in A und b

Kosten $C_{ht}(A,b)$: A(A,b) mal maximal in Berechnung auftretende ht(x)

Klassisches Modell: NP - vollständig

3. Komplexitätstheorie in der Numerik

Effizient lösbar in klassischer Theorie: $T(x) \le c \cdot (size(x))^q$

Viele numerische Probleme:

• Begrenzte **Genauigkeit** ${\mathcal E}$

Effizient lösbar für $\varepsilon < 1$: $T(\varepsilon, x) \le (|\log \varepsilon| + size(x))^q$

 \rightarrow Je kleiner ε desto länger kann die Berechnung dauern

Konditionszahl $\mu(x)$:

Abhängigkeit der Lösung von der Störung der Eingabe

Effizient lösbar: $T(\varepsilon, x) \le (|\log \varepsilon| + \log \mu(x) + size(x))^q$

 \rightarrow Je größer $\mu(x)$, desto länger kann die Berechnung dauern

Newton Maschine

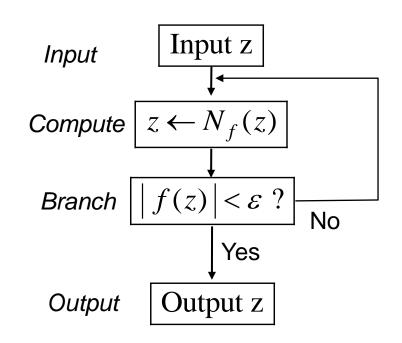
time-T Haltemenge: $\Omega_T = \{z \in \mathbb{C} \mid |f(N_f^{T'}(z))| < \varepsilon \text{ für } T', 0 \le T' \le T \}$

Haltemenge:
$$\Omega = \bigcup_{0 < T < \infty} \Omega_T$$

Input-Output Abbildung $\Phi: \Omega \to \mathbb{C}$

Für einen Startpunkt $z \in \Omega_T$:

- $\bullet \ \Phi(z) = N_f^{T'}(z)$
- T' kleinste T > 0 so dass $z \in \Omega_T$



Newton Maschine

$$N_f: \mathbb{C} \to \mathbb{C}$$
 $N_f(z) = z - \frac{f(z)}{f'(z)}, \ f'(z) \neq 0$

Betrachten wir \mathbb{C} als \mathbb{R}^2 :

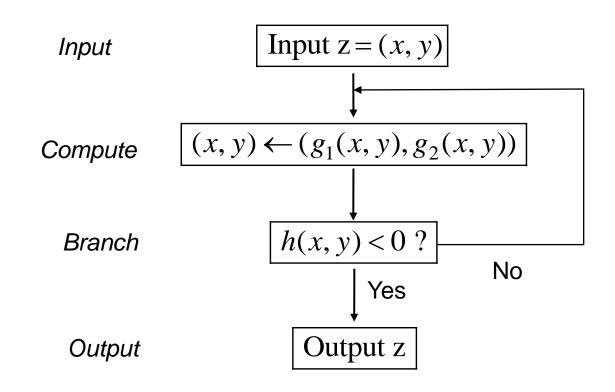
$$g = (g_1, g_2) : \mathbb{R}^2 \to \mathbb{R}^2$$

$$g_1(x, y) = \operatorname{Re} N_f(x + iy), \quad g_2(x, y) = \operatorname{Im} N_f(x + iy)$$

Abbruchregel: $|f(z)|^2 < \varepsilon^2$ oder h(x, y) < 0

$$h = (\operatorname{Re} f)^2 + (\operatorname{Im} f)^2 - \varepsilon^2 : \mathbb{R}^2 \to \mathbb{R}$$

Endlich-dimensionale Maschine über Ring



Definition

Sei R ein geordneter kommutativer Ring (oder Körper) Endlich-dimensionale Maschine M über R ist ein gerichteter Graph

 \mathcal{I}_M : Eingaberaum von der Form R^n

 S_M : Zustandsraum von der Form R^m

 $O_{\!\!M}$: Ausgaberaum von der Form R^l

4 Arten von Knoten

Definition

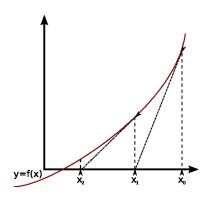
 \mathcal{I}_M : Eingaberaum (R^n) , \mathcal{S}_M : Zustandsraum (R^m) , \mathcal{O}_M : Ausgaberaum (R^l)

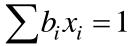
- 1) Input: Lineare Abbildung $I:\mathcal{I}_M o \mathcal{S}_M$ Nächster Knoten: β_1
- 2) Computation: Polynomiale(Rationale) Abbildung $g_\eta:S_{\!\!M}\to S_{\!\!M}$ Nächster Knoten: β_η
- 3) Branch: Polynomiale Funktion $h_{\eta}: \mathcal{S}_{M} \to R$ Nächster Knoten:
 - $h_{\eta}(z) \ge 0$ (geordnet), $h_{\eta}(z) = 0$ (nicht geordnet) \rightarrow Yes-Kante $\rightarrow \beta_{\eta}^+$
 - $h_{\eta}(z) < 0$ (geordnet), $h_{\eta}(z) \neq 0$ (nicht geordnet) $\rightarrow \beta_{\eta}^{-1}$
- 4) Output: Lineare Abbildung $O_{\eta}: \mathcal{S}_{M} \to O_{M}$ Nächster Knoten: kein

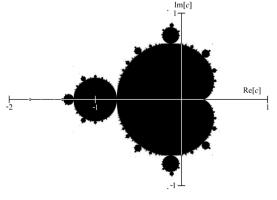
BSS-Rechenmodell Einführung

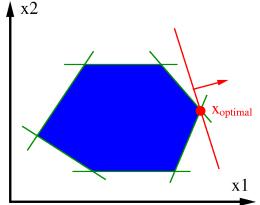
Seminar Reelle Komplexität

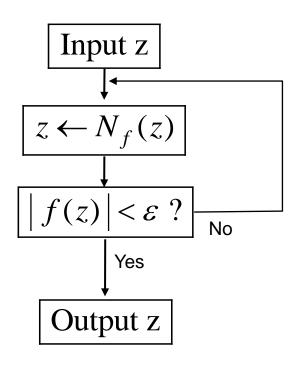
Yevgen Chebotar











Bildquellen

http://sl.wikipedia.org/wiki/Slika:Newton-Raphson_method.png

http://en.wikipedia.org/wiki/File:Turing_machine_2b.svg

http://en.wikipedia.org/wiki/File:Mandelset_hires.png

http://en.wikipedia.org/wiki/File:Mandel_zoom_00_mandelbrot_set.jpg

http://en.wikipedia.org/wiki/File:Mandel_zoom_09_satellite_head_and_shoulder.jpg

http://en.wikipedia.org/wiki/File:Mandel_zoom_03_seehorse.jpg

http://en.wikipedia.org/wiki/File:Knapsack.svg

http://upload.wikimedia.org/wikipedia/commons/f/fc/Linopt-feasible-region2.png