Formale Grundlagen der Informatik II 1. Übungsblatt

Fachbereich Mathematik Prof. Dr. Martin Ziegler Alexander Kreuzer Carsten Rösnick SS 2011 01.06.11

Minitest Lösung

a)	Sei φ eine syntaktisch korrekte aussagenlogische Formel.	Welche de	r folgenden	Aussagen	steller
	syntaktisch korrekte aussagenlogische Formeln dar?				

$$\boxtimes 1 \quad \Box \quad 01 \quad \boxtimes \neg 1 \quad \boxtimes \quad 1 \land (\neg 0 \lor \neg \neg \varphi)$$

Begründung: Siehe FGdI II Skript, Definition 1.1.

b) Sei
$$V = \{p, q\}$$
 unsere Variablenmenge und \mathfrak{I} eine Interpretation mit $\mathfrak{I}(p) = \mathfrak{I}(q) = 0$. Gilt $\mathfrak{I} \models ((\neg p \land q) \lor (p \land \neg q) \lor (p \land q))$?

Begründung: Die Aussage lässt sich umschreiben zu $\mathfrak{I} \models (p \lor q)$. Dann gilt $(p \lor q)^{\mathfrak{I}} = \max(\mathfrak{I}(p),\mathfrak{I}(q)) = 0$ nach FGdI II Skript, Definition 1.3. Entsprechend lässt sich auch $((\neg p \land q) \lor (p \land \neg q) \lor (p \land q))^{\mathfrak{I}} = 0$ nachweisen.

- c) Seien A und B zwei Aussagen, ausgedrückt als aussagenlogische Formeln.
 - i) *A* ist hinreichend für *B* bedeutet

$$\boxtimes A \to B \quad \Box B \to A$$

ii) A ist notwendig für B bedeutet

$$\boxtimes \neg A \to \neg B \quad \Box \neg B \to \neg A$$

iii) Für alle Modelle \Im gilt $\Im \models (A \rightarrow B) \Leftrightarrow \Im \models (\neg B \rightarrow \neg A)$.

Begründung: i) und ii) entsprechen den Definitionen von notwendigen respektive hinreichenden Bedingungen, und iii) drückt die Kontraposition einer Aussage aus.

Gruppenübung

Aufgabe G1

(a) Erstellen Sie die Wahrheitstafel zu folgender Formel:

$$\varphi := (\neg p \land \neg q) \rightarrow (p \lor (\neg q \land r))$$

Ist die Formel erfüllbar? Ist sie allgemeingültig?

(b) Geben Sie eine Formel zu folgender Wahrheitstafel an:

p	q	r	
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

- (c) Geben Sie eine Formel $\varphi(p,q,r)$ an, welche genau dann wahr ist, wenn höchstens eine der Variablen p,q,r wahr ist.
- (d) Geben Sie eine Formel $\varphi(p,q,r,s)$ an, welche genau dann wahr ist, wenn genau drei der Variablen denselben Wert haben.

Aufgabe G2

- (a) Beweisen oder widerlegen Sie die folgenden Aussagen.
 - (i) $\varphi \models \psi$ genau dann, wenn $\models \varphi \rightarrow \psi$.
 - (ii) Wenn $\varphi \models \psi$ und φ allgemeingültig (bzw. erfüllbar) ist, dann ist auch ψ allgemeingültig (bzw. erfüllbar).
 - (iii) Wenn $\varphi \models \psi$ und ψ allgemeingültig (bzw. erfüllbar) ist, dann ist auch φ allgemeingültig (bzw. erfüllbar).
 - (iv) $\{\varphi, \psi\} \models \vartheta$ genau dann, wenn $\varphi \models \vartheta$ oder $\psi \models \vartheta$.
- (b) Beweisen oder widerlegen Sie die folgenden Äquivalenzen und Folgerungsbeziehungen.
 - (i) $\neg(\varphi \lor \psi) \equiv \neg \varphi \land \neg \psi$
 - (ii) $\neg(\varphi \lor \psi) \equiv \neg \varphi \lor \neg \psi$
 - (iii) $\{\neg \psi, \psi \rightarrow \varphi\} \models \neg \varphi$
 - (iv) $\{\neg \varphi, \psi \rightarrow \varphi\} \models \neg \psi$

Aufgabe G3 (KNF, DNF)

Für $n \ge 1$ sei

$$\varphi_n(p_1,\ldots,p_{2n}) := \bigwedge_{i=1}^n \neg (p_{2i-1} \longleftrightarrow p_{2i})$$

(siehe Beispiel 3.9 im Skript). Zeigen Sie, dass

- (a) φ_n genau 2^n verschiedene Modelle hat;
- (b) φ_n äquivalent zu einer Formel in KNF ist, welche 2n Konjunktionsglieder besitzt;
- (c) jede zu φ_n äquivalente Formel in DNF mindestens 2^n Disjunktionsglieder hat.

Hausübung

Aufgabe H1 (4 Punkte)

Beweisen Sie per Induktion über den Formelaufbau, dass es zu jeder aussagenlogischen Formel ϕ jeweils eine äquivalente Formel ϕ' gibt, sodass

(a) ϕ' nur die Junktoren \neg und \land und keine Konstanten enthält. (Welche Eigenschaft muss hierfür die Variablenmenge haben?)

(b) ϕ' nur den Junktor \to und die Konstante 0 enthält. (Wir fassen hier den Junktor \to nicht als Abkürzung auf.)

Aufgabe H2 (4 Punkte)

Definiere die Operation \oplus (Exklusiv-Oder, XOR, Parity) durch $(p \oplus q) \equiv (p \land \neg q) \lor (\neg p \land q)$. Sei $\varphi \in B_n$ eine Formel in DNF, d.h. von der Form $\varphi(\mathbf{x}) = \bigvee_{i=1}^m m_i$ mit $m_i = \bigwedge_{j=1}^n \ell_{i,j}$ als Konjunktion von Literalen $\ell_{i,j} \in \{x_j, \neg x_j\}$.

- (a) Zeigen Sie: $p \land (q \oplus r) = (p \land q) \oplus (p \land r)$.
- (b) Drücken Sie die Formel

$$(\neg p \land q \land \neg r) \lor (p \land \neg q \land r)$$

nur durch \oplus und \wedge aus, indem Sie sich überlegen, dass $m_i \vee m_j = m_i \oplus m_j$ für alle m_i, m_j $(i \neq j)$ gilt. Wie können Sie $\neg x$ nur durch Operationen \wedge , \oplus und Konstanten 0, 1 darstellen? Was fällt Ihnen bezüglich des Auftretens von Teilformeln auf? Verkürzen Sie Ihre Formel so weit wie möglich und begründen Sie, warum dies korrekt ist.