Abschlusseigenschaften

\rightarrow Abschnitt 2.2.4

Abschlusseigenschaften für NFA/DFA erkennbare Sprachen

Nachweis: Automatenkonstruktionen

Lemmata 2.2.11/14

Vereinigung

zu DFA A_1, A_2 existiert DFA A mit $L(A) = L(A_1) \cup L(A_2)$.

Durchschnitt

zu DFA A_1, A_2 existiert DFA A mit $L(A) = L(A_1) \cap L(A_2)$.

Komplement

zu DFA A_1 existiert DFA A mit $L(A) = L(A_1)$.

Konkatenation

zu NFA A_1, A_2 existiert NFA A mit $L(A) = L(A_1) \cdot L(A_2)$.

Stern-Operation

zu NFA A_1 existiert NFA A mit $L(A) = (L(A_1))^*$.

Kap. 2: Endliche Automaten

endliche Automaten 2.2

Abschlusseigenschaften

Konkatenation (für NFA)

aus NFA
$$\mathcal{A}_1 = (\Sigma, Q^{(1)}, q_0^{(1)}, \Delta^{(1)}, A^{(1)})$$

$$\mathcal{A}_2 = \left(\Sigma, Q^{(2)}, q_0^{(2)}, \Delta^{(2)}, A^{(2)} \right)$$

mit
$$Q^{(1)} \cap Q^{(2)} = \emptyset$$
 und $q_0^{(1)} \not\in A^{(1)}$ (*)

gewinne **Hintereinanderschaltung** als NFA $\mathcal{A} = (\Sigma, Q, q_0, \delta, A)$

$$Q:=Q^{\scriptscriptstyle (1)}\cup Q^{\scriptscriptstyle (2)}$$

$$q_0 := q_0^{(1)}$$

$$A := A^{(2)}$$

$$\Delta := \Delta^{\scriptscriptstyle (1)} \cup \Delta^{\scriptscriptstyle (2)} \cup \Delta^{\scriptscriptstyle (1) \to \scriptscriptstyle (2)}$$

$$\Delta^{\scriptscriptstyle (1) o (2)} := \left\{ (q, a, q_0^{\scriptscriptstyle (2)}) \colon q \in \mathit{Q}^{\scriptscriptstyle (1)}, (q, a, q') \in \Delta^{\scriptscriptstyle (1)} ext{ für ein } q' \in \mathit{A}^{\scriptscriptstyle (1)}
ight\}$$

(*): was ist andernfalls zu tun?

Abschlusseigenschaften

Durchschnitt und Vereinigung (für DFA)

zu
$$\mathcal{A}_1 = (\Sigma, Q^{(1)}, q_0^{(1)}, \delta^{(1)}, A^{(1)})$$

 $\mathcal{A}_2 = (\Sigma, Q^{(2)}, q_0^{(2)}, \delta^{(2)}, A^{(2)})$

Produktautomat $A = (\Sigma, Q, q_0, \delta, A)$ mit

$$Q:=Q^{(1)}\times Q^{(2)}$$

$$q_0 := (q_0^{(1)}, q_0^{(2)})$$

$$\deltaig((q_1,q_2),aig):=ig(\delta^{\scriptscriptstyle(1)}(q_1,a),\delta^{\scriptscriptstyle(2)}(q_2,a)ig)$$

simuliert A_1/A_2 parallel in erster/zweiter Komponente

$$A:= \left\{egin{array}{ll} A^{(1)} imes A^{(2)} & ext{für Durchschnitt} \ \left(A^{(1)} imes Q^{(2)}
ight) \cup \left(Q^{(1)} imes A^{(2)}
ight) & ext{für Vereinigung} \end{array}
ight.$$

Kap. 2: Endliche Automaten

endliche Automaten

2.2

Abschlusseigenschaften

Korollar 2.2.16

alle regulären Sprachen von NFA/DFA erkannt

per Induktion über reguläre Ausdrücke zeige:

 $(\forall \alpha \in REG(\Sigma))$ $L(\alpha)$ Automaten-erkennbar

Induktionsanfang: $\alpha = \emptyset$ und $\alpha = \mathbf{a}$ für $\mathbf{a} \in \Sigma$. $L(\emptyset) = \emptyset$ und $L(\mathbf{a}) = \{a\}$ Automaten-erkennbar.

(Ubung!)

Induktionsschritte: von α_1, α_2 zu $\begin{cases} \alpha_1 + \alpha_2, \\ \alpha_1 \alpha_2, \\ \alpha_2 \end{cases}$

wenn $L(\alpha_1)$, $L(\alpha_2)$ Automaten-erkennbar sind, so auch

Kap. 2: Endliche Automaten

Kleene

2.3

Satz von Kleene

→ Abschnitt 2.3

Satz 2.3.1 (Kleene's Theorem)

L regulär \Leftrightarrow L DFA/NFA-erkennbar

reguläre Ausdrücke — Automaten-Berechnung erzeugen (Sprache) — erkennen (Zugehörigkeit) deskriptiv — prozedural

Syntax — Semantik

GdI I Sommer 2

M.Otto und M.Ziegler

CE /1

Kap. 2: Endliche Automaten

Kleene

2.3

DFA/NFA erkennbare Sprachen sind regulär

zum Beweis vom Satz von Kleene (Satz 2.3.1)

Aufgabe:

gewinne systematisch zu $\Sigma\text{-DFA/NFA}$ $\mathcal A$

regulären Ausdruck $\alpha \in \operatorname{REG}(\Sigma)$ mit $L(\alpha) = L(\mathcal{A})$

Idee:

sukzessive Berechnung von α' für Hilfssprachen L' so,

dass kompliziertere α'/L' sich einfach aus einfacheren zusammensetzen

(algorithmisch vgl. Idee des dynamischen Programmierens)

o.B.d.A. betrachte DFA $\mathcal{A} = (\Sigma, Q, q_0, \delta, A)$ mit $Q = \{1, \dots, n\}$

Kap. 2: Endliche Automaten

Kleene

2.3

Übersicht

reguläre Σ-Sprachen

NFA/DFA erkennbare Σ-Sprachen

$$L = L(\alpha)$$
: $\alpha \in REG(\Sigma)$

$$L = L(A)$$
: Σ -NFA/DFA A

$$L(\emptyset) = \emptyset$$
, $L(a) = \{a\}$, ...

$$\emptyset$$
, $\{a\}$, ...

abgeschlossen unter

Durchschnitt ∩

Komplement

Vereinigung \cup ja (triv) Konkatenation \cdot ja (triv) Stern-Operation * ja (triv) abgeschlossen unter $Vereinigung \cup ja$

Konkatenation ·
Stern-Operation *

Durchschnitt ∩ ja Komplement - ja

Satz von Kleene: dies sind alternative Beschreibungen derselben Sprachklasse

FGdI

Sommer 201

M.Otto und M.Ziegler

66/1

Kap. 2: Endliche Automaten

Kleene

2.3

zum Beweis vom Satz von Kleene

DFA
$$\mathcal{A} = (\Sigma, Q, q_0, \delta, A)$$

$$Q = \{1, \ldots, n\}$$

zu $0\leqslant k\leqslant n$ und $1\leqslant \ell,m\leqslant n$ sei

 $L_{\ell,m}^k := \left\{ w \in \Sigma^* \colon egin{array}{l} \mathcal{A} ext{ hat Lauf von Zustand } \ell ext{ nach Zustand } m \ ext{auf } w ext{ über Zwischenzustände } q \in \{1,\ldots,k\} \end{array}
ight\}$

 $L^0_{\ell,m} = \left\{ \begin{array}{ll} \left\{ a \in \Sigma \colon \delta(\ell,a) = m \right\} & \text{falls } \ell \neq m \\ \left\{ \varepsilon \right\} \cup \left\{ a \in \Sigma \colon \delta(\ell,a) = \ell \right\} & \text{falls } \ell = m \end{array} \right. \quad \text{(endlich)}$

 $L_{\ell,m}^{k+1} = \underbrace{L_{\ell,m}^{k}}_{(1)} \quad \cup \quad \underbrace{L_{\ell,k+1}^{k}}_{(2)} \cdot \underbrace{\left(L_{k+1,k+1}^{k}\right)^{*}}_{(3)} \cdot \underbrace{L_{k+1,m}^{k}}_{(4)}$

- (1) Läufe ohne Zustand k + 1;
- (2) Läufe von Zustand ℓ zum ersten k+1;
- (3) Schleifen durch Zustand k + 1;
- (4) Läufe vom letzten k+1 nach m.

FGdl I Sommer 2011 M.Otto und M.Ziegler 67/1

M.Otto und M.Ziegler

Kap. 2: Endliche Automaten

Kleene

2.3

Korollar 2.3.2

Folgerungen aus dem Satz von Kleene

die Klasse der regulären Sprachen ist abgeschlossen unter allen Booleschen Operationen sowie Konkatenation und Stern

alle Automaten-erkennbaren Sprachen lassen sich allein mit

- Vereinigung,
- Konkatenation und
- Stern

aus (einfachsten) endlichen Sprachen gewinnen

Kap. 2: Endliche Automaten

Myhill-Nerode

2.4

M.Otto und M.Zieglei

die Äquivalenzrelation \sim_{L}

 $L \subseteq \Sigma^*$ DFA $\mathcal{A} = (\Sigma, Q, q_0, \delta, A)$

 \sim_L zu $L\subseteq \Sigma^*$:

$$w \sim_L w' \quad \text{gdw} \quad (\forall x \in \Sigma^*) (wx \in L \Leftrightarrow w'x \in L)$$

- ~_L ist Äquivalenzrelation auf Σ*:
 reflexiv, symmetrisch, transitiv
- \sim_L ist rechts-invariant: $w \sim_L w' \Rightarrow wu \sim_L w'u$
- L besteht aus ganzen \sim_L -Äquivalenzklassen

Kap. 2: Endliche Automaten

Myhill-Nerode

. Al I to

wieviele Zustände sind notwendig?

→ Abschnitt 2.4

Zustandszahlen von DFA $\mathcal A$ mit $L=L(\mathcal A)$ als Maß für Komplexität von L

Grundidee zu minimalem DFA für L:

jeder Zustand beschreibt notwendige Information verschiedene Zustände : notwendige Unterscheidungen

2.4

Methode: betrachte induzierte **Äquivalenzrelationen** auf Σ^*

 \sim_L zu gegebenem L $w \not\sim_L w'$: "notwendige Unterscheidung" \sim_A zu gegebenem \mathcal{A} $w \not\sim_A w'$: "verschiedene Berechnungen"

41 1

mmer 2011

Otto und M.Ziegler

70 /1

Kap. 2: Endliche Automaten

Myhill-Nerode

2.4

die Äquivalenzrelation $\sim_{\mathcal{A}}$

 $L \subseteq \Sigma^*$ DFA $\mathcal{A} = (\Sigma, Q, q_0, \delta, A)$

 $\sim_{\mathcal{A}}$ zu DFA $\mathcal{A}=(\Sigma,Q,q_0,\delta,A)$

$$igg| w \sim_{\mathcal{A}} w' \quad \mathsf{gdw} \quad \hat{\delta}(q_0, w) = \hat{\delta}(q_0, w')$$

- $\sim_{\mathcal{A}}$ ist Äquivalenzrelation auf Σ^* : reflexiv, symmetrisch, transitiv
- \sim_A ist rechts-invariant: $w \sim_A w' \Rightarrow wu \sim_A w'u$
- $\sim_{\mathcal{A}}$ hat endlichen Index: $index(\sim_{\mathcal{A}}) \leq |Q|$.

d I Sommer 2011 M.Otto und M.Ziegler 71/1 FGd I Sommer 2011 M.Otto und M.Ziegler

Kap. 2: Endliche Automaten

 \sim_{L} und $\sim_{\mathcal{A}}$

Myhill-Nerode

rode

Korollare 2.4.5/6

für L = L(A): $\sim_{\mathcal{A}} Verfeinerung von \sim_{L}:$ $(\forall w, w' \in \Sigma^{*}) \ w \sim_{\mathcal{A}} w' \Rightarrow w \sim_{\mathcal{L}} w'$

$$\operatorname{index}(\sim_L) \leqslant \operatorname{index}(\sim_A) \leqslant |Q|$$

Korollare aus dem Vergleich von \sim_{L} und $\sim_{\mathcal{A}}$

- L regulär $\Rightarrow \sim_L$ hat endlichen Index
- für reguläres L: jeder DFA, der L erkennt, hat mindestens $\operatorname{index}(\sim_I)$ viele Zustände

Ziel: Satz von Myhill-Nerode

- \sim_I hat endlichen Index $\Rightarrow L$ regulär
- für reguläres L: ex. DFA mit $index(\sim_L)$ Zuständen für L

FGdl I Sommer 2011 M.Otto und M.Ziegler 73/1

Kap. 2: Endliche Automaten

Myhill-Nerode

2.4

Satz von Myhill-Nerode

Satz 2.4.7

für $L \subseteq \Sigma^*$ sind äquivalent:

- (i) \sim_L hat endlichen Index.
- (ii) *L* ist regulär.

Korollar aus dem Beweis:

kleinste DFA für reguläre L mit genau $\operatorname{index}(\sim_L)$ vielen Zuständen

Folgerung aus dem Satz:

 $L \subseteq \Sigma^*$ nicht-regulär \Leftrightarrow

es gibt eine Folge $(w_n)_{n\in\mathbb{N}}$ in Σ^* mit $w_n \not\sim_L w_m$ für $n \neq m$

Beispiel: $L = \{a^n b^n : n \in \mathbb{N}\} \subseteq \{a, b\}^*$ nicht regulär

Kap. 2: Endliche Automaten

Myhill-Nerode

2.4

Myhill-Nerode

→ Abschnitt 2.4.1

der Äquivalenzklassen-Automat

ldee: assoziiere je einen Zustand mit jeder \sim_L -Äquivalenzklasse und erhalte minimalen DFA, der L erkennt

$$[w] := \{v \in \Sigma^* \colon v \sim_L w\} \quad {\sf die} \sim_L - \ddot{\sf A} {\sf quivalenzklasse} \ {\sf von} \ w$$

$$egin{aligned} \mathcal{A}=(\Sigma,Q,q_0,\delta,A) & Q:=\Sigma^*/\sim_L\ & q_0:=[arepsilon] & \delta([w],a):=[wa] & ext{(wohldefiniert!)} \ & A:=ig\{[w]\colon w\in Lig\} & \end{aligned}$$

$$L = L(\mathcal{A})$$
 folgt aus: $(\forall w \in \Sigma^*)\hat{\delta}(q_0, w) = [w]$ (Induktion!)

FGdI I

Sommer 201

M.Otto und M.Ziegle

74/1

Kap. 2: Endliche Automaten

Myhill-Nerode

2.4

das syntaktische Monoid

→ Abschnitt 2.4.2

anstelle von \sim_L betrachte die Verfeinerung \approx_L :

$$w \approx_L w' \text{ gdw } (\forall x, y \in \Sigma^*) (xwy \in L \Leftrightarrow xw'y \in L)$$

- \approx_L ist Äquivalenzrelation auf Σ^*
- \approx_L ist Verfeinerung von \sim_L : $w \approx_L w' \Rightarrow w \sim_L w'$ $\operatorname{index}(\sim_L) \leqslant \operatorname{index}(\approx_L)$ $\operatorname{index}(\approx_L) \leqslant n^n$ wenn L von DFA mit n Zuständen erkennbar
- \approx_L ist verträglich mit Konkatenation (*Kongruenzrelation*): $u \approx_L u'$ und $v \approx_L v' \Rightarrow uv \approx_L u'v'$

$$\begin{array}{ccc} \left(\Sigma^*/{\approx_L},\,\cdot\,,[\varepsilon]_{\approx_L}\right) \text{ heisst syntaktisches Monoid zu L} \\ \Sigma^* & \longrightarrow & \Sigma^*/{\approx_L} \\ w & \longmapsto & [w]_{\approx_L} \end{array} \right\} \quad \text{ist Monoid-Homomorphismus}$$

FGdl I Sommer 2011 M.Otto und M.Ziegler 75/1

M.Otto und M.Ziegler