Analysis 2 13. Tutorium

Prof. Dr. B. Kümmerer W. Reußwig, K. Schwieger

Fachbereich Mathematik 4. Juli 2011

Das mathematische Pendel

Ein Massepunkt P schwinge an einem masselosen Seil der Länge L. Der Winkel der Auslenkung gegen die Vertikale zum Zeitpunkt t wird mit $\varphi(t)$ bezeichnet. Die Winkelgeschwindigkeit von P zum Zeitpunkt t ist also durch $\varphi'(t)$ und die Winkelbeschleunigung durch $\varphi''(t)$ gegeben. Letztere ist proportional zur tangentialen Komponente der Schwerkraft, es gilt also die Schwingungsgleichung

$$\varphi''(t) = -\omega^2 \sin \varphi(t)$$

mit $\omega = \sqrt{g/L}$. Zum Zeitpunkt t = 0 wird P aus der Position $\varphi_0 \ge 0$ heraus losgelassen und beginnt zu schwingen. Es gilt also $\varphi'(0) = 0$. Der Schwingungsvorgang soll bis zu dem Zeitpunkt T betrachtet werden, zu welchem P zum ersten Mal die Ruhelage erreicht. Für $t \in [0, T]$ ist damit φ eine streng monoton fallende Funktion und es gilt $\varphi_0 = \varphi(0) \ge \varphi(t) \ge \varphi(T) = 0$.

Aufgabe 1 Kleine Auslenkungen

Für den Fall, dass die Anfangsauslenkung φ_0 sehr klein ist, kann man $\sin \varphi$ näherungsweise durch φ ersetzen. Zu betrachten ist dann also die linearisierte Gleichung

$$\varphi''(t) = -\omega^2 \varphi(t) .$$

Raten Sie die Lösung $\varphi(t)$ und geben Sie den Wert von T an.

Aufgabe 2 Ordnungsreduktion der Differentialgleichung

Ersetzen Sie in der Schwingungsgleichung t durch τ , multiplizieren Sie mit $2\varphi'$ und integrieren Sie über das Intervall $\tau \in [0, t]$. Welche Differentialgleichung ergibt sich für $\varphi'(t)$?

Aufgabe 3 Berechung der Schwingzeit T

a) Lösen Sie die Gleichung aus Aufgabe 2 nach ω auf. Ersetzen Sie dann wieder t durch τ , integrieren Sie nochmals über das Intervall $\tau \in [0, t]$ und verwenden Sie schließlich die Identität $\cos \alpha = 1 - 2\sin^2(\alpha/2)$. Zur Kontrolle:

$$\omega t = \int_{\varphi(t)}^{\varphi_0} \frac{du}{2\sqrt{k^2 - \sin^2(u/2)}}$$

wobei $k := \sin(\varphi_0/2)$ den sog. *Modul* bezeichnet.

1

b) Zeigen Sie mit Hilfe der Substitution sin(u/2) = k sin(v):

$$T = \frac{1}{\omega} \cdot K(k) \quad \text{mit} \quad K(k) := \int_0^{\pi/2} \frac{dv}{\sqrt{1 - k^2 \sin^2 v}} \,. \tag{1}$$

Das Integral K(k) heißt vollständiges, elliptisches Integral erster Gattung zum Modul k.

Aufgabe 4 Vorbereitende Rechnung

Setze $a_n := \int_0^{\pi/2} \sin^{2n}(v) \ dv$. Zeigen Sie mittels partieller Integration die Rekursionsformel $a_n = \left(1 - \frac{1}{2n}\right) a_{n-1}$. Folgern Sie mit vollständiger Induktion

$$\int_0^{\pi/2} \sin^{2n} v \, dv = \frac{\pi}{2} (-1)^n \binom{-1/2}{n} \, .$$

Erinnerung: Für $\alpha \in \mathbb{R}$ ist $\binom{\alpha}{n} := \frac{\alpha(\alpha-1)...(\alpha-n+1)}{n!}$.

Aufgabe 5 Reihendarstellung des elliptischen Integrals

Schreiben Sie für $k \in [0,1[$ den Integranden des elliptischen Integrals in (1) als Potenzreihe in der Variablen $x = k^2 \sin^2 v$. Bestimmen Sie damit für das elliptische Integral K(k) eine Darstellung als Potenzreihe in k. Vergleichen Sie mit Ihrem Ergebnis aus Aufgabe 1.

Hinweis: Für -1 < x < 1 gilt $(1+x)^{\alpha} = \sum_{n=0}^{\infty} {\alpha \choose n} x^n$ (vgl. 7. Übung).