Analysis 2 12. Tutorium

Prof. Dr. B. Kümmerer W. Reußwig, K. Schwieger

Fachbereich Mathematik 27. Juni 2011

Aufgabe 1 Ein naiver Differentialquotient

Entscheiden Sie für folgende Funktionen $f: \mathbb{R}^m \supseteq D \to \mathbb{R}^n$, ob folgender Grenzwert existiert und bestimmen sie diesen gegebenenfalls:

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{\|x - x_0\|}.$$

(a)
$$f: \mathbb{R}^2 \to R, f(x, y) = 2x - y.$$

(b)
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = x$.

Macht obiger Grenzwert zur Verallgemeinerung der eindimensionalen Ableitung Sinn?

Aufgabe 2 Linearität der Ableitung

Seien $f,g:\mathbb{R}^m\to\mathbb{R}^n$ im Punkt $x_0\in D$ differenzierbar mit Ableitungen $Df(x_0)$ und $Dg(x_0)$. Zeigen Sie, dass dann auch die Funktion f+g im Punkt x_0 differenzierbar ist und bestimmen sie deren Ableitung.

Aufgabe 3 Alte und neue Definition der Ableitung eines Weges

Zeigen Sie, dass die Differenzierbarkeit eines Weges im Sinne von 13.5. der Vorlesung äquivalent ist zur Differenzierbarkeit einer Funktion $\gamma : \mathbb{R} \supseteq I \to \mathbb{R}^n$ Sinne von 13.7 der Volesung.

Aufgabe 4 Bilineare Funktionen

Wir erinnern an die Definition einer bilinearen Funktion: Es seien E, F, V Vektorräume über einem Körper \mathbb{K} . Eine Funktion $B: E \times F \to V$ heißt *bilinear*, wenn für alle $e_1, e_2 \in E, f_1, f_2 \in F$ und $\lambda_1, \lambda_2, \mu_1, \mu_2 \in \mathbb{K}$ gilt:

$$B(\lambda_1 e_1 + \lambda_2 e_2, \mu_1 f_1 + \mu_2 f_2) = \sum_{i,j=1}^{2} \lambda_i \mu_j \cdot B(e_i, f_j).$$

Sind nun E,F und V Banachräume, so wird $E\times F$ durch komponentenweise Operationen (vgl. LA) zu einem Vektorraum und der Norm $\|(e,f)\|:=\max\{\|e\|,\|f\|\}$ wieder zu einem Banachraum.

Um die Notation einfach zu halten, betrachten wir in dieser Aufgabe nur bilineare Funktionen $B: E \times E \rightarrow F$.

Aufgabe 4.1 Die Ableitung stetiger bilinearer Funktionen

Es sei $B: E \times E \to F$ eine stetige bilineare Funktion. In dieser Aufgabe wollen wir die Ableitung von B in einem Punkt $(x, y) \in E \times E$ bestimmen.

(a) Dazu betrachten wir zuerst die einfachst mögliche bilineare Funktion: Sei $E = F = \mathbb{R}$ und $B(x, y) := x \cdot y$. Zeigen Sie, dass folgendes gilt:

$$B(x + h, y + k) = B(x, y) + B(x, k) + B(y, h) + B(h, k).$$

Bestimmen Sie nun eine lineare Abbildung $L(x,y): \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ und eine Restfunktion $r(x,y): \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, so dass gilt

$$B(x+h, y+k) = B(x, y) + L(x, y)(h, k) + r(x, y)(h, k) \cdot ||(h, k)||$$

mit $\lim_{(h,k)\to 0} r(x,y)(h,k) = 0$.

(b) Zeigen Sie: Für alle Banachräume E und F ist jede stetige bilineare Funktion $B: E \times E \to F$ an jeder Stelle $(x, y) \in E \times E$ differenzierbar. Bestimmen sie dort deren Ableitung.

Aufgabe 4.2 Anwendungen

Bestimmen Sie von folgenden Funktionen die Ableitungen, wobei Sie die Resultate der Zusatzaufgabe verwenden dürfen, um Stetigkeit nachzuweisen:

- (a) $f: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}, f(x, y) := \langle x, y \rangle.$
- (b) $K: \mathscr{C}[0,1] \times \mathscr{C}[0,1] \to \mathbb{R}, K(f,g) := \int_0^1 f(x)g(x)dx.$
- (c) $f: M_n(\mathbb{R}) \to M_n(\mathbb{R}), f(A) := A^2$.
- (d) $f: \mathbb{R}^n \to \mathbb{R}$, $f(x) = \langle Ax, x \rangle$ für ein festes $A \in M_n(\mathbb{R})$.
- (e) $\det: M_2(\mathbb{R}) \to \mathbb{R}$ im Punkt A = 1.
- (f) $\varphi : \mathbb{R}^3 \to \mathbb{R}^3$, $\varphi(x) := x \times x$.

Zusatzaufgabe 4.3 Charakterisierung von Stetigkeit bilinearer Funktionen

Es seien E und F Banachräume und $B: E \times E \to F$ bilinear. Zeigen Sie, dass folgende Bedingungen äquivalent sind:

- (1) Die Abbildung *B* ist stetig.
- (2) Die Abbildung B ist im Punkt (0,0) stetig.
- (3) Die Abbildung B ist auf der Menge $\{(x,y) \in E \times E, ||x|| \le 1, ||y|| \le 1\}$ beschränkt.
- (4) Es existiert eine Konstante C > 0 mit $||B(x, y)|| \le C \cdot ||x|| \cdot ||y||$.

Zeigen Sie weiter, dass jede bilineare Abbildung automatisch stetig ist, wenn ihr Definitionsbereich ein endlich dimensionaler Banachraum ist.