Analysis 2 3. Tutorium

Prof. Dr. B. Kümmerer W. Reußwig, K. Schwieger **Fachbereich Mathematik** 25. April 2011

Aufgabe 1

Bestimmen Sie jeweils den Konvergenzradius der angegebenen Potenzreihe mit Hilfe des Quotienten- oder Wurzelkriteriums:

a)
$$\sum_{n=1}^{\infty} \frac{5n^3+1}{7n^6-3n+1} z^n$$
, b) $\sum_{n=1}^{\infty} \frac{2^{n-1}}{n^{n+1}} z^n$, c) $\sum_{n=1}^{\infty} (1+\frac{1}{n})^n z^n$, d) $\sum_{n=1}^{\infty} \frac{n^{2n}}{(2n)!} z^n$.

b)
$$\sum_{n=1}^{\infty} \frac{2^{n-1}}{n^{n+1}} z^n$$

c)
$$\sum_{n=1}^{\infty} (1 + \frac{1}{n})^n z^n$$
,

d)
$$\sum_{n=1}^{\infty} \frac{n^{2n}}{(2n)!} z^n$$

Aufgabe 2

- a) Zeigen Sie, dass die Folge der Funktionen $f_n(x) := \sqrt{1/n + x^2}$ auf \mathbb{R} gleichmäßig gegen die Betragsfunktion konvergiert.
- b) Konvergieren die Funktionenfolgen gleichmäßig auf den jeweiligen Mengen?

$$f_n(x) := \sqrt[n]{x}$$
 auf $]0, \infty[$,

$$g_n(x) := \frac{1}{1+n|x|}$$
 auf \mathbb{R} .

Klein o für Funktionen

Wir wollen in den folgenden Aufgaben das Wachstumsverhalten verschiedener Funktionen etwas detaillierter untersuchen. Ein übliches Mittel dafür sind die sog. Landau-Symbole:

Sei $U \subseteq \mathbb{R}$ eine Umgebung der Null und $f: U \setminus \{0\} \to \mathbb{R}$ eine Funktion mit $f(x) \neq 0$ für alle $x \in U \setminus \{0\}$. Wir sagen, eine Funktion $g: U \setminus \{0\} \to \mathbb{R}$ liegt in klein o von f (für $x \to 0$), falls gilt:

$$\lim_{x \to 0} \frac{\left| g(x) \right|}{\left| f(x) \right|} = 0. \tag{1}$$

Wir schreiben in diesem Fall g = o(f).

1

Bemerkungen zur Notation

- a) Mathematisch bezeichnet o(f) die Menge aller Funktionen g, die Gleichung (1) erfüllen. Statt g = o(f) müsste man also eigentlich $g \in o(f)$ schreiben. In der Literatur ist das jedoch nicht üblich.
- b) Die Schreibweise findet man oft bei Fehlerabschätzungen. Dort schreibt man üblicherweise $g(x) = h(x) + o(x^{\alpha})$ für $g h = o(x^{\alpha})$ und sagt, die Funktionen g und h stimmen in der Nähe der Null bis auf einen Fehler der Ordnung kleiner x^{α} überein.
- c) Die Begriffsbildung lässt sich analog zum Grenzübergang $x \to 0$ auch auf andere Grenzübergänge übertragen, insbesondere auf $x \to \infty$.

Aufgabe 3 Rechnen mit klein o

Zeigen Sie:

- a) Für $\alpha < \beta$ gilt $x^{\beta} = o(x^{\alpha})$.
- b) o(f) ist ein Vektorraum, d.h., ist g, h = o(f) und $\lambda, \mu \in \mathbb{R}$, so gilt $\lambda g + \mu h = o(f)$.
- c) Ist $f = o(x^{\alpha})$ und $g = o(x^{\beta})$, so gilt $f \cdot g = o(x^{\alpha+\beta})$.
- d) Ist f stetig in 0 (fortsetzbar) und $g = o(x^{\alpha})$, so gilt $f \cdot g = o(x^{\alpha})$.
- e) Sei $f = o(x^{\alpha})$ und $g = o(x^{\beta})$. Für welche $\gamma \in \mathbb{R}$ gilt $f + g = o(x^{\gamma})$?
- f) $o(x^5 + 2x^4 + 5x^3) = o(x^3)$.

Aufgabe 4 Zusatzaufgabe, falls doch noch Zeit ist

a) Für eine Potenzreiche $\sum_{n=0}^{\infty} a_n x^n$ mit Konvergenzradius R>0 gilt

$$\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + o(x^2).$$

- b) Für den Grenzübergang $x \to \infty$ gilt: Für jedes Polynom $p(x) = a_0 + \cdots + a_n x^n$ ist $p = o(e^x)$. D.h. kurz: e^x wächst schneller als jedes Polynom.
- c*) Sei $N \in \mathbb{N}$ fix. Finden Sie ein Polynom p, welches mit der Funktion $f(x) := \exp\left(-\frac{1+x}{1-x}\right)$ in der Nähe der Null bis auf einen Fehler der Ordnung kleiner x^N übereinstimmt. Hinweis: Zeigen Sie zuerst: Ist f stetig mit $f = o(x^N)$, so gilt $e^{f(x)} = 1 + o(x^N)$. Das Polynom kann beliebigen Grad haben, und Sie brauchen nicht die Koeffizienten des Polynoms bestimmen.