Analysis 2 9. Übung

Prof. Dr. B. Kümmerer W. Reußwig, K. Schwieger

Fachbereich Mathematik 06. Juni 2011

Präsenzaufgabe

Aufgabe 1 Konvergenz von Integralen

a) Sei $f : [a, b] \to \mathbb{R}$ eine Regelfunktion. Zeigen Sie:

$$\lim_{x \nearrow b} \int_{a}^{x} f(t) dt = \int_{a}^{b} f(t) dt.$$

Folgern Sie, dass die Funktion $x \mapsto \int_a^x f(t) dt$ stetig ist. Finden Sie eine Regelfunktion f, sodass $x \mapsto \int_a^x f(t) dt$ nicht differenzierbar ist.

b) Zeigen Sie: Sei $(f_n)_n$ eine Folge von Regelfunktionen $f_n:[a,b]\to\mathbb{R}$, die gleichmäßig gegen $f:[a,b]\to\mathbb{R}$ konvergiert. Dann ist f eine Regelfunktion, und es gilt

$$\lim_{n\to\infty}\int_a^b f_n(x)\,dx = \int_a^b f(x)\,dx.$$

Reicht es auch, wenn die Folge punktweise konvergiert?

c) In den Tutorien wird gezeigt, dass $\int_0^a x^p \ dx = \frac{a^{p+1}}{p+1}$ für p > -1 gilt. Zeigen Sie damit für $0 \le a < b$:

$$\int_a^b e^x dx = e^b - e^a.$$

Aufgabe 2 Faktorisierung komplexer Polynome

Erinnern Sie sich an das aus der Schule bekannte Verfahren zur Polynomdivision mit Rest. Machen Sie sich klar, dass Sie den Algorithmus auch für Polynome mit komplexen Koeffizienten $p(z) = \sum_{k=0}^n a_k z^k$ mit $a_0, \ldots, a_n \in \mathbb{C}$ durchführen können.

a) Der sog. Fundamentalsatz der Algebra besagt, dass jedes nicht-konstante komplexe Polynom $p(z) = \sum_{k=0}^n a_k z^k$ eine Nullstelle $\lambda \in \mathbb{C}$ besitzt. Zeigen Sie mit Hilfe des Fundamentalsatzes der Algebra und dem euklidischen Algorithmus (Polynomdivision): Jede Polynomfunktion $p:\mathbb{C} \to \mathbb{C}$ lässt sich in der Form

$$p(z) = L \cdot (z - \lambda_1) \cdot \ldots \cdot (z - \lambda_n)$$

mit $L, \lambda_1, \dots, \lambda_n \in \mathbb{C}$ darstellen (faktorisieren).

b) Faktorisieren Sie die Polynomfunktionen

$$p(z) := z^5 + z^4 - 2z^3 - 2z^2 + z + 1$$
, $q(z) := z^4 - 3z^3 + 3z^2 - 2$.

Hinweis: Das Polynom p hat nur ganzzahlige Nullstellen und q(1+i)=0.

Aufgabe 3 Partialbruchzerlegung komplexer rationaler Funktionen

Vorbemerkung: Diese Aufgabe und die zugeh. Hausaufgabe dient als Vorbereitung zur Integration rationaler Funktionen, die wir auf einem der kommenden Aufgabenblätter behandeln werden.

Für eine Polynomfunktion p bezeichen wir mit $\operatorname{Grad}(p)$ den Grad des Polynoms. Eine $komplexe\ rationale\ Funktion$ ist eine Funktion $f:\mathbb{C}\subseteq D\to\mathbb{C}$ der Form

$$f(z) = \frac{p(z)}{q(z)}$$

mit komplexen Polynomfunktionen p und $q \neq 0$ (vgl. Analysis 1, 7. Übung, Hausaufg. 26). Man überlegt sich leicht, dass jede solche Funktion in der Form $f(z) = r(z) + \frac{p(z)}{q(z)}$ mit Polynomen r, p, q mit Grad(p) < Grad(q) geschrieben werden kann. Wir betrachten deshalb im Folgenden nur rationale Funktionen $f(z) = \frac{p(z)}{q(z)}$ mit Grad(p) < Grad(q). Für eine solche rationale Funktion kann man mit dem euklidischen Algorithmus zeigen, dass sie sich eindeutig als Linearkombinationen von Funktionen der Form

$$g(z) = \frac{1}{(z - \lambda)^k} \tag{1}$$

darstellen lässt, wobei $\lambda \in \mathbb{C}$ jeweils eine Nullstelle von q mit Vielfachheit größer gleich k ist. Diese Darstellung heißt *Partialbruchzerlegung* von f.

Bestimmen Sie die Partialbruchzerlegung der folgenden rationalen Funktionen:

$$f_1(z) := rac{1}{z^2 + 1} \,. \qquad \qquad f_2(z) := rac{z^2}{(z^2 + 1)^2} \,,$$

Hinweis: Machen Sie sich zunächst klar, welche Funktionen der Form (1) auftauchen. Die Skalare der Linearkombination lassen sich z.B. mittels Koeffizientenvergleich bestimmen.

Hausaufgaben

Aufgabe 1

Berechnen Sie näherungsweise $1,1^{0,8}$ nur durch Auswertung von Polynomen, und beurteilen Sie, wie falsch Ihr Ergebnis höchstens sein kann.

Aufgabe 2 Faktorisieren reeller Polynome

In den Präsenzaufgaben haben Sie sich mit der Faktorisierung komplexer Polynomfunktionen beschäftigt. Wir wollen uns nun mit reellen Polynomfunktionen beschäftigen, also Funktionen $p: \mathbb{R} \to \mathbb{R}$ der Form $p(x) = \sum_{k=0}^{n} a_k x^k$ mit $a_0, \dots, a_n \in \mathbb{R}$.

a) Zeigen Sie: Jede reelle Polynomfunktion p lässt sich in der Form

$$p(x) = L \cdot (x - \lambda_1) \cdot \dots \cdot (x - \lambda_n) \cdot ((x - c_1)^2 + d_1^2) \cdot \dots \cdot ((x - c_m)^2 + d_m^2)$$

mit $L, \lambda_k, c_k, d_k \in \mathbb{R}$ darstellen (faktorisieren). Welche Koeffizienten λ_k, c_k und d_k treten bei der Faktorisierung eines Polynoms p auf?

b) Faktorisieren Sie die reellen Polynomfunktionen

$$p(x) := x^4 - 3x^3 + 3x^2 - 2$$
, $q(x) := x^5 - 2x^4 - 4x^3 + 4x^2 - 5x + 6$

Hinweis: Das Polynom p kennen Sie aus den Präsenzaufgaben.

Aufgabe 3 Partialbruchzerlegung reeller rationaler Funktionen

In den Präsenzaufgaben haben wir uns mit der Partialbruchzerlegung komplexer rationaler Funktionen beschäftigt. Wir widmen uns nun reellen rationalen Funktionen: Sei f eine reelle rationale Funktion

$$f: \mathbb{R} \supseteq D \to \mathbb{R}, \quad f(x) = \frac{p(x)}{q(x)}$$

mit reellen Polynomfunktionen p und $q \neq 0$ mit Grad(p) < Grad(q). Man kann zeigen, dass sich f eindeutig als Linearkombination von Funktionen der Form

$$g(x) = \frac{1}{(x-\lambda)^k}$$
, $h_1(x) = \frac{x}{((x-c)^2 + d^2)^k}$, $h_2(x) = \frac{1}{((x-c)^2 + d^2)^k}$

darstellen lässt, wobei $\lambda \in \mathbb{R}$ eine reelle bzw. $c \pm id$ eine komplexe Nullstelle von q mit Vielfachheit größer gleich k ist. Diese Darstellung heißt (reelle) *Partialbruchzerlegung* von f.

Bestimmen Sie die Partialbruchzerlegung der rationalen Funktionen

$$f_1(x) := \frac{5x^2 + 12x + 47}{x^3 + 7x^2 - 5x - 75},$$
 $f_2(x) := \frac{x^2}{(x^2 + 1)^2}.$

Aufgabe 4 Integral-Skalarprodukt

Sei a < b. Wir betrachten den Vektorraum $\mathscr{C}[a,b]$ der stetigen Funktionen $f:[a,b] \to \mathbb{R}$. Zeigen Sie:

- a) Ist $f:[a,b] \to \mathbb{R}$ stetig mit $\int_a^b |f(x)| dx = 0$, so gilt f=0.
- b) Für $f, g \in \mathscr{C}[a, b]$ setzen wir

$$\langle f, g \rangle := \int_a^b f(x) \cdot g(x) \, dx$$
.

Dann wird dadurch ein Skalarprodukt auf $\mathscr{C}[a,b]$ definiert. Insbesondere durch $||f||_2 := \sqrt{\langle f,f \rangle}$ eine Norm auf $\mathscr{C}[a,b]$ gegeben.

c) Ist der Raum $\mathscr{C}[a,b]$ bzgl. der Norm $\|\cdot\|_2$ vollständig? Hinweis: Finden Sie eine Folge stetiger Funktionen, die punktweise gegen eine unstetige Funktion konvergiert.