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Preface

These notes contain in part material from the lecture notéd.lHinze, R. Pinnau, M. Ul-
brich, S. Ulbrich for the autumn schollodelling and optimization with partial differential
equationdHamburg, September 26-30, 2005).

In the current version of these lecture notes, only the darttons of M. Ulbrich and S.
Ulbrich have been used.



Chapter 1

Introduction and examples

1.1 Introduction

The modelling and numerical simulation of complex systehaygan important role in

physics, engineering, mechanics, chemistry, medicinanta, and in other disciplines.
Very often, mathematical models of complex systems resydartial differential equations
(PDESs). For example heat flow, diffusion, wave propagatituid flow, elastic deforma-

tion, option prices and many other phenomena can be modajieing PDEs. Many of

the techniques that we will develop can also be applied tiondgpdtion problems with other
constraints than PDEs, e.g., ordinary differential equmesti(ODES) or partial differntial-

algebraic equations (PDAES).

In most applications, the ultimate goal is not only the matagcal modelling and numer-
ical simulation of the complex system, but rather the optation or optimal control of
the considered process. Typical examples are the optinmitatmf a thermal treatment
in cancer therapy and the optimal shape design of an airdriaét resulting optimization
problems are very complex and a thorough mathematical sisaly necessary to design
efficient solution methods.

There exist many different types of partial differentiabiatjons. We will focus on linear
and semilinear elliptic and parabolic PDEs. For these PhE&gxistence and regularity of
solutions is well understood and we will be able to develogidyfcomplete theory.

Abstractly speaking, we will consider problems of the faling form

min f(w) subjectto E(w)=10, C(w)e€ K, (1.1)

weWw

wheref : W — R is the objective functionf) : W — Z andC' : W — V are operators
between Banach spaces, dad- V is a closed convex cone.

In most cases, the spacBs, Z andV are (generalized) function spaces and the operator
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equationF (w) = 0 represents a PDE or a system of coupled PDEs. The constraint
Cw)e Kk

is considered as an abstract inequality constraint. Samesti(e.g., in the case of bound
constraints), it will be convenient to replace the inegyalbnstraint by a constraint of the
formw € S, whereS C W is a closed convex set:

Hgl/rll/ f(w) st Ew)=0, weS. 1.2)

Here “s.t.” abbreviates “subject to”.

To get the connection to finite dimensional optimizatiomsider the case
W=R" Z=R, V=R" K=(-00,0".
Then the problem (1.1) becomes a nonlinear optimizatioblpro

Hrl:‘il/rll/ f(w) st Ew)=0, Cw)<0. (1.3)
Very often, we will have additional structure: The optintina variablew admits a natural
splitting into two parts, a statg € Y and a control (or design) € U, whereY andU are
Banach spaces. Thé#i =Y x U, w = (y,u), and the problem reads

i fly,u) st E(y,u)=0, C(y,u)€Kk. (1.4)
Here,y € Y describes the state (e.g., the velocity field of a fluid) ofdbesidered system,
which is described by the equatidf{y, «) = 0 (in our context usually a PDE). The control
(or design, depending on the applicatien¥ U is a parameter that shall be adapted in an
optimal way.

The splitting of the optimization variable = (y, ) into a state and a control is typical
in the optimization of complex systems. Problems with thiscure are calleaptimal
control problemsin most cases we will consider, the state equafign, ©) = 0 admits,
for everyu € U, a unique corresponding solutigiu), because the state equation is a well
posed PDE foy in whichu appears as a parameter. Several examples will follow below.

We use the finite-dimensional problem (1.3) to give a tealeutimportant questions we
will be concerned with.

1. Existence of solutions.

Denote byf* the optimal objective function value. First, we show, usiing properties of
the problem at hand, thdtis bounded below on the feasible $&}, of (1.3) and that (1.3)
has a feasible point. Then

—oo < f*= inf f(w).

weEW44q
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We consider a minimizing sequenge®) C W4, i.e., E(w*) = 0, C(w*) <0, f(w*) —

f*. Next, we prove thatw*) is bounded (which has to be verified for the problem at hand).
Now we do something thanly works in finite dimensiongVe conclude that, due to bound-
edness(w*) contains a convergent subsequefweg) x — w*. Assuming the continuity of

f, E andC we see that

fw*) = lim fw*) = f* Ew") = lim Ew*) =0 Cw*)= lim Cw*) <o0.

K>k—o0 K3>k—o0 K3>k—o0
Thereforew* solves the problem.

We note that for doing the same in Banach space, we need aegmat for the compact-
ness argument, which will lead us to weak convergence anét e@apactness. Further-
more, we need the continuity of the functigrand of the operatorg andC' with respect
to the norm topology and/or the weak topology.

2. Uniqueness

Uniqueness usually relies on strict convexity of the prohlee., f strictly convex,F linear
andC; convex. This approach can be easily transfered to the iefthimhensional case.

3. Optimality conditions

Assuming continuous differentiability of the functiofisC, andE, and that the constraints
satisfy a regularity condition on the constraints, cattedstraint qualificationCQ) at the
solution, the following first-order optimality conditiom®Id true at a solutiom™*:

Karush-Kuhn-Tucker conditions:

There exist Lagrange multipliers® € R™ andu* € RP such that(w*, \*, u*) solves the
following KKT-system:

Vf(w)+C'(w)'A+ E'(w) =0,
E(w) =0,
Cw) <0, A>0, Cw)'rx=0.

Here, the column vectoV f(w) = f'(w)” € R™ is the gradient off andC’(w) € R™ ",
E'(w) € RP*™ are the Jacobian matrices@fand £.

All really efficient optimization algorithms for (1.3) builupon these KKT-conditions.
Therefore, it will be very important to derive first order mpality conditions for the infinite-
dimensional problem (1.1). Since the KKT-conditions imeoterivatives, we have to ex-
tend the notion of differentiability to operators betweem8eh spaces. This will lead us
to the concept of Fchet-differentiability. For concrete problems, the appiate choice
of the underlying function spaces is not always obvious,itigtcrucial for being able to
prove the Fechet-differentiability of the functiofi and the operatorS, E and for verifying
constraint qualifications.

4. Optimization algorithms
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As already said, modern optimization algorithms are basedalving the KKT system.
For instance, for problems without inequality constraitite KKT system reduces to the
following (n + p) x (n + p) system of equations:

G(w,p) = (Vf(w)E—Ef)/(w)Tu) = 0. (1.5)

One of the most powerful algorithms for equality constrdiog@timization, the Lagrange-
Newton method, consists in applying Newton’s method to theaéon (1.5):

Lagrange-Newton method:
Fork =0,1,2,...:

1. STOP ifG(wk, u*) = 0.
2. Computes” = (s}, si)" by solving

G'(w", ut)s" = —G(u*, i*)

and set ! := wk 4 sf, pf = pk 4

Sinced involves first derivatives, the matri%’(w, i) involves second derivatives. For the
development of Lagrange-Newton methods for the problessdla 1) we thus need second
derivatives off andE.

There are many more aspects that will be covered, but foriihe Ibeing we have given
sufficient motivation for the material to follow.

1.2 Examples for optimization problems with PDES

We give several simple, but illustrative examples for ofation problems with PDEs.

1.2.1 Optimization of a stationary heating process

Consider a solid body occupying the dom&ic R3. Lety(z), x € 2 denote the tempera-
ture of the body at the point

We want to heat or cool the body in such a way that the temperdistributiony coincides
as good as possible with a desired temperature distribygiof — R.
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Boundary control

If we apply a temperature distribution: 02 — R to the boundary of? then the tempera-
ture distributiony in the body is given by theaplace equation

—Ay(z) =0, z€Q (1.6)
together with the boundary condition Bbbin type

K2 (0) = () (u(e) (), @ € 00,

wherex > 0 is the heat conduction coefficient of the material of the badg s : 02 —
(0, 00) is a positive function modelling the heat transfer coeffitt® the exterior.

Here,Ay is the Laplace operator defined by

Ay(r) = Z Yoz (T)

with the abbreviation
(z) = Qy(x)
Yaia dx?

and%(x) is the derivative in the direction of the outer unit normét) of 002 atz, i.e.,
dy
ov

As we will see, the Laplace equation (1.6) is altiptic partial differential equation of
second order.

() = Vy(x) -v(x), x €.

In practice, the contralk is restricted by additional constraints, for example byerpgnd
lower bounds
a(z) <wu(x) <b(x), =z €.

To minimize the distance of the actual and desired tempergtandy,, we consider the
following optimization problem.

min  flya) L / (y() — (o) o+ 5 / u()? dS(z)

2 o9

subjectto — Ay =0 onq, (State equation)
oy _ B (u—1y) onos2
o kK ’
a<u<b onofd (Control constraints)

The first term in the objective functiondl(y, «) measures the distance gfandy,, the
second term is a regularization term with parameter 0 (typically o € [1075,1073)),
which leads to improved smoothness properties of the optiorarol for « > 0.
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If we set

i ® (5 F0_,) con® (123)
whereY andU are appropriately chosen Banach spaces of functions
y:Q—=>R, u:00—R,
7 = 7y X Zy with appropriately chosen Banach spages”, of functions
21: Q= R, 25:00 — R,
V=UxU,and
K ={(v1,v2) €U XU : v(x) <0, x € 00},

then the above optimal control problem is of the form (1.1).

One of the crucial points will be to choose the above functipaces in such a way thatF,
andC' are continuous and sufficiently often differentiable, tsu@e existence of solutions,
the availability of optimality conditions, etc.

Boundary control with radiation boundary

If we take heat radiation at the boundary of the body into antowve obtain a nonlinear
Stefan-Boltzmann boundary condition. This leads to the lsesair state equation (i.e., the
highest order term is still linear)

—Ay =0 on¢,
ay_ﬁ 4 4
GV_/{(U y*) onof.

This is a problem of the form (1.1) with

E(y,u) ¥ (@ _ é_(ﬁ‘%— y‘*))

ov K

and the rest as before.

Distributed control

Instead of heating at the boundary it is in some applicatadss possible to apply a dis-
tributed heat source as control. This can for example besgetiby using electro-magnetic
induction.
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If the boundary temperature is zero then, similar as aboeeyltain the problem

min  flyw) L / (y(x) — ya(x))? do + 2 / u(a)? de

2 2
subjectto — Ay =~u onQ,
y=20 on of2,

a<u<b onf.

Here, the coefficient : 2 — [0, 00) weights the control. The choice = 1, for some
control region(). C 2 restricts the action of the control to the control regian

If we assume a surrounding temperatyyeéhen the state equation changes to

—Ay=~u onf,
dy B

= == (y, — on o).
9 . (Ya —¥)
Problems with state constraints

In addition to control constraint alstate constraints

[<y<r

with functions/ < r are of practical interest. They are much harder to handie ¢batrol
constraints.

1.2.2 Optimization of an unsteady heating processes

In most applications, heating processes are time-depénteen the temperatung: Q x
[0,7] — R depends on space and time. We set

QEQx(0,T), ¥=09x/(0,T).

Boundary control

Let y, be a desired temperature distribution at the end fihandy, be the initial temper-
ature of the body. To find a contral : ¥ — R that minimizes the distance of the actual
temperature(-, 7') at the end time and the desired temperagyreve consider similar as
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above the following optimization problem.

T
min  fly )k / (W(T, ) — ya(a))’ do + & / / u(, £)? dS(z) dt
2 Q 2 0 o0
subjectto vy, — Ay =0 onQ,

oy B

27— Dy — )y

5 K(u y) onx,
y(x,0) = yo(z) onQ

a<u<b onXx.

Here,y, denotes the partial derivative with respect to time angdis the Laplace operator
in space. The PDE
Yy — Ay =0

is calledheat equatiorand is the prototype of parabolic partial differential equation.

Similarly, unsteady boundary control with radiation andtaady distributed control can be
derived from the steady counterparts.

Optimal control problems with linear state equation anddgatc objective function are
calledlinear-quadratic If the PDE is nonlinear in lower order terms then the PDE Ikeda
semilinear

1.2.3 Optimal design

A very important dscipline is optimal design. Here, the obje is to optimize the shape
of some object. A typical example is the optimal design of agnr a whole airplane with
respect to certain objective, e.g., minimal drag, maximifinot a combination of both.

Depending on the quality of the mathematical model emplptlezlflow around a wing is
described by the Euler equations or (better) by the comimleddavier-Stokes equations.
Both are systems of PDEs. A change of the wing shape would #seiftiin a change of the
spatial flow domairf2 and thus, the design parameter is the dornitself or a description

of it (e.g. a surface describing the shape of the wing). Ogation problems of this type
are very challenging.

Therefore, we look here at a much simpler example:

Consider a very thin elastic membrane spanned over the dafhainR2. Its thickness
u(z) > 0, x € , varies (but is very small). At the boundary 0f the membrane is
clamped at the level; = 0.

Given a vertical force distributiog : 2 — R acting from below, the membrane takes
the equilibrium position described by the graph of the fiorcyy : 2 — R (we assume
that the thickness is negligibly compared to the displacgjnEor small displacement, the
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mathematical model for this membrane then is given by tHevahg elliptic PDE:

—div(uVy) =g onQ,
y=0 onos,

Here, divo = 3", (v;),, denotes the divergence of Q — R

The design goal consists in finding an optimal thicknessubject to the thickness con-
straints
a(x) <u(x) <b(z) ze€Q

and the volume constraint
/ w(z)de <V
Q
such that the compliance

f(y) = / o(@)y(z) de

of the membrane is as small as possible. The smaller the camapl the stiffer the mem-
brane with respect to the logd We obtain the following optimal design problem

min  fly) L / g(0)y(a)dz

subjectto —div(uVy) =g onq,
y=0 onos,
a<u<b onf,

/Qu(x) de < V.
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Chapter 2

Linear functional analysis and Sobolev
spaces

We have already seen that PDEs do in practical relevanttisiisanot necessarily have
classical solutions. A satisfactory solution theory cadéeeloped by using Sobolev spaces
and functional analysis.

We recall first several basics on Banach and Hilbert spacasil®ean be found in any
book on linear functional analysis, e.g., [AlI99], [Jo9&gR093], [WI71], [Y080].

2.1 Banach and Hilbert spaces

2.1.1 Basic definitions

Definition 2.1.1  (Norm, Banach space)
Let X be a real vector space.

i) Amapping| - || : X — [0,00) isanormon X, if

1) [ul| =0 <= u=0,
2) [|[Aul]| = [AMu Vue X, XeR,
3) [lu+ol <llull + o] Vu,veX.
i) A normed real vector spack is called (real)Banach spaciit is complete, i.e., if any

Cauchy sequende:,,) has a limitu € X, more precisely, ifim,;, , o0 [|Um — || =
0 then there is, € X with lim,,_, ||u, — u|| = 0.

15
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Example 2.1.2
1. The function space
C(Q) ={u:Q— R : ucontinuoug
is a Banach space with the sup-norm

[ull ey = sup [u(x)].
z€e)

2. For a multiindexa = (o, ..., a,) € N2 we define its order bjn| = 327 | a; and
associate thén|-th order partlal derlvatlve atr
ol
Du(z) &
u() Ozt - - Qxon ’
The spaces B
C*(Q) ={ueC() : D*ue C(Q)for |a| <k}

are Banach spaces W|th the norm

lullorgy = D 1Dl

la| <k

Definition 2.1.3  (Inner product, Hilbert space)
Let H be a real vector space.

i) Amapping(-,-) : H x H — R s aninner producon H, if
1) (u,v) = (v,u) Yu,v € H,
2) For everyv € H the mapping: € H — (u,v) is linear,
3) (u,u) >0 Vue Hand(u,u) =0 < u=0.
ii) A vector spacé{ with inner product-, -) and associated norm
lull = v/ (u, u)

is calledPre-Hilbert space

iii) A Pre-Hilbert space H, (-, -)) is calledHilbert spacef it is complete under its norm
lull = v/, ).

Example 2.1.4Let() # Q C R" be open and bounded. Théa'(Q2), (-,-);2) is a Pre-
Hilbert space with the_?-inner product

(4, 0) 12 = /Q u(z) v(z) da.

Note that(C(2), (-, -)2) is not complete (why?).



S. Ulbrich: Optimization with Partial Differential Equats 17

Theorem 2.1.5Let H be a Pre-Hilbert space. Then til&auchy-Schwarz inequalityolds

|(u, 0)] < flul[llvll Vu,0 e H.

Many spaces arising in applications have the importantgntgghat they contain a count-
able dense subset.

Definition 2.1.6 A Banach spaceX is called separabléf it contains a countable dense
subset. l.e., there exists = {z; € X : i € N} C X such that

VeeX, Ve>0: JyeY: [z—vy|y<e.

Example 2.1.7 For bounded? the space’ () is separable (the polynomials with rational
coefficients are dense by Weierstrald's approximation gredr

2.1.2 Linear operators and dual space

Obviously, linear partial differential operators defineelar mappings between function
spaces. We recall the following definition.

Definition 2.1.8 (Linear operator)
Let X, Y be normed vector spaces with norths| .,

Ay
i) A mappingA : X — Y is calledlinear operatolif it satisfies
A(Mu+ pv) = Mu+ pAv Yu,v € X, A\ u€R.
Therangeof A is defined by
RA=E{yeY :JzeX: y= Az}
and thenull spaceof A by

N(A)= {z € X : Az =0}.

i) ByL(X,Y)we denote the space of all linear operaters X — Y that are bounded
in the sense that
def
IAllxy & sup || Aully < oco.

llull =1

L(X,Y) is a normed space with theperator nornj| - || . .

Theorem 2.1.91f Y is a Banach space thefi( X, Y') is a Banach space.
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The following theorem tells us, as a corollary, thal'ifis a Banach space, any operator
A € L(X,Y) is determined uniquely by its action on a dense subspace.

Theorem 2.1.10Let X be a normed spac#, be a Banach space and IEtC X be adense
subspace (carrying the same norm.&$. Then for allA € L(U,Y'), there exists a unique
extensiond € L(X,Y) with Al = A. For this extension, there holdsi|| ., = [[ A,y

Definition 2.1.11 (Linear functionals, dual space)

i) LetX be aBanach space. A bounded linear operator X — R, i.e.,u* € L(X,R)
is called abounded linear functionan X.

i) The spaceX* = £(X,R) of linear functionals orX is calleddual spacef X and is
(by Theorem 2.1.9) a Banach space with the operator norm

lu*(| = sup u*(u)].
Jullx=1

iii) We use the notation
(U™, u)x- x o u*(u).

(-,-)x+x Is called thedual pairingof X* and X.

Of essential importance is the following

Theorem 2.1.12 (Riesz representation theorem)
The dual spacéf* of a Hilbert spaceH is isometric toH itself. More precisely, for every
v € H the linear functionak* defined by

def

(W uygepg = (v,u)y YVue H

is in H* with norm|ju*|| ;. = ||v| . Vice versa, for any.* € H* there exists a unique
v € H such that
(W u)g~g = (v,u)y Yue H

and ||u*|

e = 1ol
In particular, a Hilbert space is reflexive (we will introdudag later).

Definition 2.1.13 Let X, Y be Banach spaces. Then for an operatoe £(X,Y') the dual
operatorA* € L(Y*, X*) is defined by

(A*u,v)x+ x = (U, Av)y~y YVueY* velX.

It is easy to check thatA*|

Y* X* ||A||X,Y'
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2.2 Sobolev spaces

To develop a satisfactory theory for PDEs, it is necessargpéace the classical function
spaces”*(Q2) by Sobolev spaced’*?(Q2). Roughly speaking, the spatE*?({2) consists
of all functionsu € L?(2) that possess (weak) partial derivativesu € L*(2) for |a| < k.

We recall

2.2.1 Lebesgue spaces

Our aim is to characterize the function spdc¥) that is complete under the”-norm,

where
1/p
||u|er(Q>=(/Q |u<x>|pdx)  pell,),

]y = €5 SUP() (= sup u(a)] for u € C(2)).
e N

2.2.2 Lebesgue measurable functions and Lebesgue integral
Definition 2.2.1 A collectionS C P(RR") of subsets dR” is calledo-algebra onR™ if

) O,R" €S,
i) AeSimpliesR”\ A€ S,
i) if (Ag)ren C Sthenl ;2 Ay € S.

A measurg: : S — [0, co] is a mapping with the following properties:

) (@) =0.

i) If (Ax)keny C S is a sequence of pairwise disjoint sets then
m (U Ak> => u(A)  (o-additivity).
k=1 k=1

Of essential importance is thealgebra of Lebesgue measurable sets with corresponding
Lebesgue measure.

Theorem 2.2.2 There exists the-algebra3,, of Lebesgue measurable sets®hand the
Lebesgue measure: B,, — [0, oo] with the properties:
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i) B, contains all open sets (and thus all closed sets).
i) wis ameasure oif,.
i) If Bisany ball inR™ thenu(B) = |B|.

iv) If A C Bwith B € B, andu(B) = 0thenA € B, andu(A) = 0 (R",B,,,n) is a
complete measure space).

The setsd € B, are calledLebesgue measurable

Notation: If some property holds for alt € R\ N with N C B, u(N) = 0, then we say
that it holds almost everywhere (a.e).

Definition 2.2.3 We say thaff : R" — [—o0, 00| is Lebesgue measuralife
{zeR": f(x) >a}eB, Yack.

If Ae B,andf : A — [—o0,00] then we callf Lebesgue measurable ohif f1, is
Lebesgue measurable. Here, we use the convelitign= f on A and f1, = 0 otherwise.

Remark For open2? ¢ R"™ any functionf € C(Q) is measurable, sincéf > a} is
relatively open in2 (and thus open)]

We now extend the classical integral to Lebesgue measuiaitéons.

Definition 2.2.4 The set of nonnegative elementary functions is defined by
E,(R") © {f = ZaklAk . (Ag)1<k<m C B, pairwise disjointy > 0, m € N} )
k=1
The Lebesgue integral gf=>";" | a;14, € E(R") is defined by

- f(z) dp(z) = Z o pi(Ayg).

An extension to general Lebesgue measurable functionsasnell by the following fact.

Lemma 2.2.5 For any sequencéf;) of Lebesgue measurable functions also

sup fx, inf fi, limsup fx, liminf f;
k k k—00 k—o0

are Lebesgue measurabile.

For any Lebesgue measurable functipn> 0 there exists a monotone increasing sequence
(fk)keN C E+(Rn) with f = sup,, fk
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This motivates the following definition of the Lebesgue gred.
Definition 2.2.6 (Lebesgue integral)

i) For a nonnegative Lebesgue measurable funcfionR" — [0, oc] we define the
Lebesgue integral of by

[ (z) dp(z) = sup | fu(@) dp(z),

where( fx)ren C E4(R™) is @ monotone increasing sequence Witk sup,, f.

ii) For a Lebesgue measurable functign: R* — [—o0, o] we define the Lebesgue
integral by

| f(@)dula) =

R

(@) dp(x) — . f(x) du(x)

with /™ = max(f,0), f~ = max(—f, 0) if one of the terms on the right hand side is
finite. In this casef is calledintegrable

i) If Ae B,andf: A — [—o0,00] is a function such thaf1, is integrable then we
define

[ @@ [ f@a) duta).

Notation: In the sequel we will writelz instead ofdy(xz). O

2.2.3 Definition of Lebesgue spaces

Clearly, we can extend th&’-norm to Lebesgue measurable functions.

Definition 2.2.7 LetQ) € B,,. We define fop € [1, oo) the seminorm

def l/p
ol e ( / |u<x>rp) .

ull oo ) = eSSQSUﬁJU(x)I = inf{a>0: p({ul > a}) =0}.
S

and

Now, forl < p < oo we define the spaces

Lr(Q)= {u : 2 — R Lebesgue measurable||u|,, < oo} .
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These are not normed space since there exist mesurablédiusct: 2 — R, u # 0, with
[ull ,» = 0.

We use the equivalence relation

: by Lemma 2.2.8
u~v iNLP(Q) = [lu— 0| g =0 ytem u=va.e.

to defineL?((2) = LP(Q2)/~ as the space of equivalence classes of a.e. identical tnti
equipped with the norr - || ;..

Finally we define

Ep

loc
and setL, () & £7,,(2)/~.

In the following we will consider elements bf and L} . as functions that are known up to
a set of measure zero.

(Q)= {u:Q — R Lebesgue measurableu € £P(K) forall K c Q compac}

Remark Itis easy to see that?(Q) c L}, .(Q) forall p € [1,00]. O

loc

We collect several important facts of Lebesgue spaces.
Lemma 2.2.8 For all u,v € £P(Q2), p € [1, o] we have

lu—2v];, =0 < u=v a.e.

Proof: The assertion is obvious fer= co. Forp € [1,00) letw = u — v.
"=" We have for allk ¢ N
0= > 1 > 1/k})YP
= llwllpe = u({lw] = 1/k})7.

Henceu({w > 1/k}) = 0 and consequently
pw #0) = p (U {lw] > 1/k:}) <3 pffwl = 1/k}) = 0.

"«<="If w = 0 a.e. thenw” = 0 onR™\ N for someN with x(N) = 0. Hence,
|w[P = sup,, wy, with (wy,) C E4(R™), where without restrictiom;, = 0 onR” \ N. Hence
Jgn wi dz = 0 and consequently, , |w|?dz = 0. O

Theorem 2.2.9 (Fischer-Riesz)rhe spaced ?(f?), p € [1, 00|, are Banach spaces. The
spacel?(Q) is a Hilbert space with inner product

(u,v) = /uvdx.
Q
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Lemma 2.2.10 (Holder inequality)
LetQ € B,,. Then for allp € [1, oc] we have with the dual exponept |1, oo] satisfying
L+ 1=1forallue Lr(Q)andv € L9(Q2) theHolder inequality

wo € L'(Q) and [luv] 1 < Jull [0l -
Now we can characterize the dual spacé bfspaces.

Theorem 2.2.11LetQ € B,, p € [1,00) andq € (1, 0] the dual exponent satisfying
( *

% + % = 1. Then the dual space.?(2))* can be identified with.?(2) by means of the

Isometric isomorphism

v € LUQ) = u* € (IP(Q))*,  where (u*,u) oy 1r = /u(x)v(x) dx.
Q

Remark Note however that! is only a subspace ¢f.>)*. O

2.2.4 Density results and convergence theorems

A fundamental result is the following:

Theorem 2.2.12 (Dominated convergence theorem)et2 € B,,. Assume thaf, : QO —
R are measurable with
fr — f ae. and |f| <g ae.

with a functiong € £*(Q2). Thenfy, f € £}(Q2) and

Q Q

Next we state the important fact that the set of "nice” fuoics
C2(Q) = {ue C™(Q) : supfu) C 2 compac}

is actually dense id?(2) for all p € [1, 00).
Lemma 2.2.13 Let(2 C R™ be open. Then'>(Q2) is dense inL?(2) for all p € [1, c0).
A quite immediate consequence is the following useful tesul

Lemma 2.2.14LetQ) C R" be open and’ € L;, () with

loc

/Q f@)p(x)dr =0 ¥ g e Cx(Q).

Thenf =0 a.e.
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2.2.5 Weak derivatives

The definition of weak derivatives is motivated by the faatttfor any functioru € C*(Q)
and any multindexv € NjJ, |« < k, the identity holds (integratey|-times by parts)

/Daugpdx: (—1)|O‘|/uDo‘<pd:1:, Vo eCr ). (2.1)
Q Q

This motivates the definition

Definition 2.2.15 Let 2 C R™ be open and let. € L] (). If there exists a function
w € L},.(Q) such that

loc

/wgpdx = (1)l / uD%pdx, Y@ Cr() (2.2)
Q Q

thenD%u := w is called thea-th weak partial derivative of.
Remark

1. By Lemma 2.2.14, (2.2) determines the weak derivalite < L .(Q2) uniquely.

2. Foru € C*(Q) anda € NY, |a| < k, the classical derivative = D*u satisfies (2.1)
and thus (2.2). Hence, the weak derivative is consistehttivé classical derivativel

2.2.6 Regular domains and integration by parts
Fork € Npandg € (0,1] let
CH(R™) = {u € C*R") : D*u B-Holder continuous fofa| = k} .

Here, f is 5-Holder continuous if there exists a constaht- 0 such that

[f(@) = f)| < Clz =yl Y,y
Of course,1-Holder continuity is Lipschitz continuity.

We setC*9(R") = C*(R"),

Definition 2.2.16 (C*#-boundary, unit normal field)
Let) C R™ be open and bounded.
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a) We say thaf) has aC*#-boundary k € Ny U {00}, 0 < 8 < 1, if foranyz € oU
there exists > 0, k € {1,...,n}, and a functiony € C*(R"~!) such that

QN B(z;r) ={y € B(x;7) + Yy < YY1, Yb—1: Y1+ Yn) } -
Instead ofC%!-boundary we say alsoipschitz-boundary

b) If 9Q is C%! then we can define a.e. theit outer normal field : 92 — R", where
v(zx), |v(z)|, = 1, is the outward pointing unit normal o2 at .

c) LetdoQ beC%!. We call the directional derivative

ou

5(:17) Zu(z) - Vu(z), z€dQ,

thenormal derivativeof w.

We recall the Gaul3-Green theorem (integration by partsdtam

Theorem 2.2.17LetQ) C R" be open and bounded wittf *-boundary. Then for all, v €

Q)

/Q g, (2)0(z) dz = — /Q w(@)vy, (z) do + / u(z)o(z)vy(x) dS(z).

o

2.2.7 Sobolev spaces

We will now introduce subspacé$*?(Q) of functionsu € LP(Q2), for which the weak
derivativesDu, |o| < k, are inLP(£2).

Definition 2.2.18 Let 2 C R" be open. Fork € Ny, p € [1, 00|, we define th&obolev
spacelV*?(Q) by

WHhP(Q) = {u € L(Q) : u has weak derivative®*u ¢ LP(Q) for all |a| < k} (2.3)

equipped with the norm

1/p
[l = (Z D“U'ﬂ) , €[l o00),

| <k

HUHW’“’O(Q) = Z ”Dau||L°°(Q)‘

|| <k
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Remark 2.2.19 e The setC>(Q) N WkP(Q), k € Ny, 1 < p < oo, is dense idV*»((Q).
Hence JW*?(Q) is the completion ofu € C*°(Q2) : ||ul|,y+, < oo} With respect to the
norm{| - f|y,-

e If Qis a bounded Lipschitz-domain théne(Q2) is dense ilV*?(Q), k € Ny, 1 < p <

Q.

Notations:
1. In the case = 2 one writesH"*(Q) = TW*2(Q2). We note thatV%?(Q) = L?(Q) for
p € [1,00].
2. For weak partial derivatives we use also the notatiQn .,.;, Uz,zjey; - - -

3. Foru € H*(Q) we set

O

Remark Simple examples show that weak differentiability does rextassarily ensures
def

continuity. We have for example with & B(0; 1) andu(z) & ||z||° that

ue W (Q) < f< ?.

O
Theorem 2.2.20Let2 C R" be openf € Ny, andp € [1, oo]. ThenW*?(Q) is a Banach
space.

Moreover, the spac&*(Q)) = W*?2(Q) is a Hilbert space with inner product

(1, 0) () = Z (D%u, D) 12

o<k

To incorporate homogeneous boundary conditions alreatheiflunction space we define
the following subspace.

Definition 2.2.21 Let2 C R™ be open. Folk € Ny, p € [1, o], we denote by
WE()

the closure of?>°(Q) in W*?(Q) (i.e., for anyu € Wy () there exists a sequence;) C
Ceo(2) with lim; o [lu — @il yrsq) = 0)- The space is equipped with the same norm as

W*r(Q) and is a Banach space. The spdég(Q2) = W, "*(Q) is a Hilbert space.
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Remark 2.2.22 If  has Lipschitz-boundary théfi}” (Q2) contains exactly alk € W'?(1)
such thatD*u = 0 for |a| < k — 1 on 992 with an appropriate interpretation of thraces
Dau|aQ. O

We consider next the appropriate assignment of boundangsdso calleboundary tracep
for functionsu € W*?(Q) if Q has Lipschitz-boundary.

If w € WkP(Q) N C(Q) then the boundary values can be defined in the classical gnse
using the continuous extension. However, sifi€eis a set of measure zero and functions
u € WHP(Q) are only determinded up to a set of measure zero, the defimifiboundary
values requires care. We resolve the problem by definingca operator

Theorem 2.2.23 Assume tha®2 C R"™ is open and bounded with Lipschitz-boundary. Then
for all p € [1, 00| there exists a unique bounded linear operator

T : WH(Q) — LP(09)

such that
Tu=ulgg YuecWQ)NC ().

Here, |1 yy1.0 (0. 100y dEPENdS ONly of andp. Tw is called thetraceof u on d12.

2.2.8 Poincagé’s inequality

We have seen that the trace of functiongfi(Q2), k¥ > 0, vanishes. For the treatment of
boundary value problems it will be useful that the semi-norm

1/2

Jul iy = Z |D%ull7 (2.4)

|a|=k
defines an equivalent norm on the Hilbert spag(). It is obvious that
[l < llull geq)-
We will now show that also

lull gy < Clul ey ¥ u € Hy(Q). (2.5)

Theorem 2.2.24 (Poincagé’s inequality)
LetQ2 C R" be open and bounded. Then there exists a constant) with

[l gy < Nullgrey < C'lulgegy ¥ u € Hy(Q). (2.5)
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2.2.9 Sobolev imbedding theorem

Sobolev spaces are embedded in classical spaces:

Theorem 2.2.25Let (2 C R" be open, bounded with Lipschitz-boundary. bete N,
1<p<oo.

) Forall £ € Ny, 0 < 8 < 1 with
m——>k+p
p
one has the continuous embedding
W™r(Q) c CH9(Q).

More precisely, there exists a constdnt> 0 such that for alks € W™ ((2) possibly
after modification on a set of measure zera C*#(Q2) and

||U||ck75(s'2) < CH“’HWWP(Q)‘
i) Forall k € Ny, 0 < g < 1with
m—2>k + 05
p
one has the compact embedding
Wmr(Q) cc O (Q),
i.e., closed balls il?/™»(Q) are relatively compact i*#(Q).
i) For ¢ > 1 andl € Ny withm —n/p > | — n/q one has the continuous embedding
W™ (Q) c Whe(Q).

The embedding is compactif — n/p > | — n/q and forl = 0 we havelV%7(Q) =
L1(Q).

For arbitrary open bounde C R™ i), ii), iii) hold for W;""(Q2) instead ofi¥ ™ (Q).
Proof: See for example [AlI99], [Ad75], [EVI8]C

Example 2.2.26For n < 3 we have the continuous imbeddifg (©2) C L°(Q2) and the
compact imbedding/?(Q2) cc C(Q) forn < 3.
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2.2.10 The dual spacéd ' of H;

The dual space of the Hilbert spagg () is denoted by7 ~*(€2). This space can be char-
acterized as follows:

Theorem 2.2.27 For the space? (), Q C R" open, the following holds:
H1(Q) = {v € Hy(Q) = (f°v)2 —G—Z(fj,vxj)Lz  fle LQ(Q)}.
j=1
Furthermore,

n 1/2 n

1 lly—s = min { (Z !If”’\liz) )i = () S (Fva e, € L?(Q)} |
j=0 J=1

Proof:

“C™ Let f € H Q). By the Riesz representation theorem, there exists a uniqae
Hy () with
(w,0)m = (f,V)g-1my VvE Hy ().

Setf =u, f7 = Uy, J > 1.
Then

(fU,U)L2+Z(fj,U:cj)L2 = (u,v)quLZ(uxj,vmj)Lz = (u,v)g1 = <f,v>H717H5 Vv e H&(Q).

J=1

“D" For gy, - .., gn € L*(9), consider
g:v € HH Q) H (8 0)2 + Y (07,0, 2.
j=1
Obviously,g is linear. Furthermore, for all € H}(2), there holds

(9% 0)2 + ) (07 ve)e2l S Mg llellvll o+ g N2 llva Il
j=1 j=1

n 1/2 n
< (Z\Igﬂlb) (Hvllm +levmj||L2)
§=0 Jj=1
n 1/2
_ 7|12
= (DUl | Ml
=0

1/2
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This showsy € () and

n 1/2
12
9l -1 < (Znglle) :
j=0
Now let f = g, letu be the Riesz representation, and choose

(O ™) = (uy gy, .y Uy,

as above. Then by the Riesz representation theorem

n n
2 2 2 2 2 P2
gl - = 1A= = ullZ = lullre + > lua 2, =D 1]/
j=1 j=0
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2.3 Weak solutions of elliptic PDEs

In this section we sketch the theory of weak solutions faptd second order partial dif-
ferential equations. For more details we refer, e.g., t®@PAl [EvI8], [ReR093], [Tr05],
[Wi71].

2.3.1 Weak solutions of the Poisson equation
Dirichlet boundary conditions

We start with the elliptic boundary value problem

—Ay=f onq, (2.6)
y=0 ondR, (Dirichletcondition) (2.7)

whereQ) C R™ is an open, bounded set aride L?(2). This admits discontinuous right
hand sidegf, e.g. source termg that act only on a subset 6f. Since a classical solution
y € C?(Q2) N CL(N) exists at best for continuous right hand sides, we need ageres
solution concept. It is based orvariational formulationof (2.6)—(2.7).

To this end let us assume thatc C?(Q) N C*(Q) is a classical solution of (2.6)—(2.7).
Then we havey € H}(Q) by Remark 2.2.22. Multiplying by € C>°(€) and integrating
over() yields

—/Ayvda::/fvd:c VoveCxrQ). (2.8)
0 Q

It is easy to see that (2.6) and (2.8) are equivalent for daksolutions. Now integration
by parts gives

— / Ypiz; VAT = / Yu; Uy, AT — / Yz, V1 dS () = / Y, Uz, AT (2.9)
Q Q o0 Q
Note that the boundary integral vanishes, singg = 0. Thus, (2.8) is equivalent to

/Vy-Vvdx:/fvdx Vove CrQ). (2.10)
Q 0

We note that this variational equation makes already pestatse in a larger space:
Lemma 2.3.1 The mapping

(y,v) € HY(Q)? — a(u,v) = /Vy-Vvde]R
0
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is bilinear and bounded:
la(y, V)| < [yl g [Jv]] - (2.11)
For f € L*(Q), the mapping

UGH&(Q)H/fdeG]R
Q

is linear and bounded:

/qu dx

Proof: Clearly,a(y, v) is bilinear. The boundedness follows from

= (f,0)ee < 1 Fll 2 llvll 2 < 1Al ll g (2.12)

.0 < [ 195 Vo) ds < [ 19901, Vo(a),do
< MIVYlall 2 MIVolloll e = [yl ol < lylglivllg = lyllyllely,
where we have applied the Cauchy-Schwarz inequality.
The second assertion is triviall

By density and continuity, we can extend (2.10yte H} () andv € H}(Q). We arrive
at thevariational formulation

/Vy~Vvd:z::/fvdx Vo e Hy(Q). (2.13)
Q Q

We summarize: (2.6) and (2.13) are equivalent for a claksatationy € C*(Q) N C'(Q).
But the variational formulation (2.13) makes already petyesense fory € H;(f2) and
f € L*(Q). This motivates the following definition.

Definition 2.3.2 A functiony € H}(Q) is called weak solutionof the boundary value
problem(2.6)2.7)if it satisfies thevariational formulatioror weak formulation

/QVy~Vvdx:/vadx Yo e Hy(Q). (2.13)
In order to allow a uniform treatment of more general equegtithan (2.6)—(2.7), we intro-
duce the following abstract notation. Let
V= Hy (),
a(y,v) = /va -Voudzr, y,veV, (2.14)
F(v) = (f,v)r2e), veV. (2.15)
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Thena : V x V — R is a bilinear form,F’ € V* is a linear functional o and (2.13) can
be written as
Findy e V: a(y,v) =F(v) VYoveV. (2.16)

Remark Sincea(y,-) € V*forally € V andy € V — a(y,-) € V* is continuous and
linear, there exists a bounded linear operatorl/ — V* with

a(y7 U) = <Ay7 U>V*,V v Y,v € V. (217)
Then (2.16) can be written in the form
Findy e V: Ay =F. (2.18)

O

We have the following important existence and uniquenesdtréor solutions of (2.16).

Lemma 2.3.3 (Lax-Milgram lemma)
LetV be areal Hilbert space with inner product -),, and leta : V' x V' — R be a bilinear
form that satisfies with constantg, 5, > 0
la(y,v)| < aollylly|lvlly, Yy,velV, (boundedness)  (2.19)
a(y.y) = Bollylly, Yy eV (V-coercivity)  (2.20)

Then for any bounded linear functional € V* the variational equation(2.16) has a
unique solutiory € V. Moreover,y satisfies

1
lylly < EHFHV*' (2.21)

In particular the operatorA defined in(2.17)satisfies

1

AcL(V,V*), AelL(VeV), [[A M,y < iR

Remark If a(-,-) is symmetric, i.e., ifa(y,v) = a(v,y) for all y,v € V, then the Lax-
Milgram lemma is an immediate consequence of the Riesz reptatson theorem. In fact,
in this cas€u, v) := a(u, v) defines a new inner product dhand the existence of a unique
solution of (2.16) follows directly from the Riesz repressin theorem.O

Application of the Lax-Milgram lemma to (2.13) yields

Theorem 2.3.4LetQ2 C R™ be open and bounded with Lipschitz-boundary.

Then the bilinear formz in (2.14)is bounded and/-coercive forVV = H}(Q2) and the

associated operatoA € L£(V,V*) in (2.17)has a bounded inverse. In particul2.6)-

(2.7)has for all f € L*(Q2) a unique weak solutiop € H}(Q2) given by(2.13)and satisfies
HyHHl(Q) = CPHfHLQ(Q)a

whereC'r depends ofi) but not onf.
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Proof: We verify the hypotheses of Lemma 2.3.3. Cleaily;, ) in (2.14) is bilinear. The
boundedness 2.19 follows from (2.11) Using the Poi@sanequality (2.5) we obtain

1 1
o ) _ 2 2 - 2
a(yay> - /va Vydfl? |y‘Hé(Q) > CQHyHHOI(Q) C2Hy“V

which shows thé/-coercivity (2.20).
Finally, the definition off" in (2.15) yields

[El[y~ = sup F(v) = sup (f,v)r2) < sup |[fll 20Vl 20 < [1f1l220)-

llvllv =1 llvllv =1 llvllv=1

Thus, the assertion holds witt> = C? by the Lax-Milgram lemma.C

Boundary conditions of Robin type

We have seen that in heating applications the boundary tonds sometimes of Robin
type. We consider now problems of the form

—Ay+coy=f ong, (2.22)
% +ay =g onodf2, (Robin condition) (2.23)
1%

whereQ) C R" is open and bounded with®!-boundary,f € L?(Q2) andg € L?*(092) are
given andey € L>(Q2), a € L>(092) are nonnegative coefficients.

Weak solutions can be defined similarly as abovegisfa classical solution of (2.22)—(2.23)
then for any test function € C'(2) integration by parts, see (2.9), yields as above

/(—Ay—l—coy)vda: =
Q
/Vy Vo dz + (coy, v) 20 / x):/fvdx VvGC’l(Q).
o0 81/ Q

Inserting the boundary conditic@% = —ay + g we arrive at

/ Vy - Vudz + (coy, v) ) + (o, v)r200) = (f,v)2(0) + (9:V)12000) Vv € HY(Q).
Q

(2.24)
The extension ta € H'(Q) is possible, since foy € H'(Q2) both sides are continuous
with respect ta € H*(2) and sinceC' (Q) is dense inif!(12).

Definition 2.3.5 A functiony € H'(Q) is called weak solutionof the boundary value
problem(2.22)+(2.23)if it satisfies thevariational formulatioror weak formulation (2.24)
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To apply the general theory, we set
V= H'(Q),
aly, v) = /Q Vy - Vods+ (coy, )o@ + (@, 0)eay, pvEV,  (2.25)
F(v) = (f,v)r2@ + (9:v)12000), v €EV.

The Lax-Milgram lemma yields similarly as above

Theorem 2.3.6Let ) C R" be open and bounded with Lipschitz-boundary and:Je¢
L>=(€2), a € L*=(012) be nonnegative withcol| 12 (o) + [lovll z2(9q) > 0

Then the bilinear formu in (2.25)is bounded and/-coercive forVV = H'(Q2) and the
associated operatod € L£(V,V*) in (2.17) has a bounded inverse. In particul.6)-
(2.7)has for all f € L?(Q) andg € L*(09) a unique weak solutiop € H'(Q) given by
(2.24)and satisfies

||y||H1(Q) < OR(Hf||L2(Q) + ||g||L2(8Q))7
whereCr depends of2, «, ¢y but not onf, g.

Proof: The proof is an application of the Lax-Milgram lemma. Theibdedness af(y, v)
and of F'(v) follows by the trace theorem. THé-coercivity is a consequence of a general-
ized Poincag inequality. O

A refined analysis yields the following result [Tr05].
Theorem 2.3.7 Let the assumptions of the previous theorem hold and tetn/2, s >

n—1,n > 2. Thenforanyf € L"(Q2) andg € L*(02) there exists a unique weak solution
y € HY(Q) N C(Q) of (2.6)«2.7). There exists a constaft,, > 0 with

9l g0y T 1Wllo@ < Coolllflzr @) + 191l s a0

whereC,, depends ofi), «, ¢q but not onf, g.

An analogous result holds for homogeneous Dirichlet bogndanditions instead of Robin
boundary conditions [KS80].

2.3.2 Weak solutions of uniformly elliptic equations

More generally, we can consider general second orderielRR2Es of the form

Ly=f onQ (2.26)
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with

Ly d:ef — Z(aijyzi)mj —+ oY, CLZ']', Cy € LOO, Co Z 0, Clij = aji (227)

ij=1

and L is assumed to baniformly ellipticin the sense that there is a constéant 0 such
that

> ai(x)&& > 0|I€]° for almost allz € Q and all € R™. (2.28)

i,j=1

For example in the case of Dirichlet boundary conditions
Yoo = 0
the weak formulation of (2.26) is given by
Findy e V:= Hj(Q): a(y,v) = (f,v)12¢0) YveEV

with the bilinear form

CL(y? U) = /Q Z (aij yxivcr:j + Co yﬂ) d.fE

ij=1

Our previous results remain true, if in the case of the Robimbdary condition the normal
derivative is replaced by the conormal derivative

a def
S () £ Vy(a) - Alv(e),  Al) = (ay () (2.29)
A
2.3.3 An existence and uniqueness result for semilinear ellipticg@a-
tions

We finally state an existence and uniqueness result for anmly elliptic semilinear equa-
tion
Ly +d(z,y) = f on{
Jy (2.30)

=7 - 0
aVAJrozerb(l’,y) g ond

where the operatak is given by

n

Ly = — Z(aijy%)lj + oY, CLij, Co € LOO, Co 2 O, aij = aﬂ (227)

ij=1
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and L is assumed to be uniformly elliptic in the sense that thegedsnstant > 0 such
that

Y ai(@)€& > 0)|¢]° for almost allz € Q and allg € R™. (2.28)
i,j=1
Moreover, we assume that< o € L*(0Q2) and that the functiong : 2 x R — R, and
b: 00 x R — R satisfy

d(x,-) is continuous and monotone increasing for a.&. (2,
b(x,-) is continuous and monotone increasing for a.&. 052, (2.31)
d(-,y),b(-,y) measurable for alj € R.

Under these assumptions the theory of maximal monotoneatiperand a technique of

Stampacchia can be applied to extend Theorem 2.3.7 to thairsEam elliptic equation
(2.30), see for example [Tr05].

Theorem 2.3.8Let 2 C R" be open and bounded with Lipschitz-boundary, dete
L*(Q), a € L=(02) be nonnegative withicol| ;o) + [l 1290, > 0 and let(2.28)
(2.31)be satisfied. Moreover, let>n/2,s >n —1,2 <n < 3.

If d(-,0) = 0 andb(-,0) = 0 then(2.30) (2.27)has for anyf € L"(Q2) andg € L*(0f2) a

unique weak solutiop € H*(Q2) N C(Q). There exists a constant,, > 0 with

||y||H1(Q) + ||y||c(Q) < COO(HfHLT(Q) +1lg
whereC', depends ofi), «, ¢y but not onf, g, b, d.

L(o2))»

If more generallyi(-,0) € L"(2) andb(-,0) € L*(912) then there exists a constaft, > 0
with

||yHH1(Q) + ||?/”c(§z) < Cx(llf = d('70>HLT(Q) + llg —b(-,0)
whereC,, depends ofi), «, ¢q but not onf, g, b, d.

Lo

2.4 Gateaux- and Frechet Differentiability

We extend the notion of differentiability to operators beém Banach spaces.
Definition 2.4.1 LetF' : U C X — Y be an operator withX, Y Banach spaces ard # ()
open.

a) I'is calleddirectionally differentiablat x € U if the limit

F(x +th) — F(x) cy

dF(z,h) = lim

t—0t

exists for allh € X. In this casedF(z, h) is called directional derivative of in the
directionh.
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b) F is calledGateaux differentiablat x € U if F' is directionally differentiable at and
the directional derivative”’(z) : X > h — dF(x,h) € Y is bounded and linear, i.e.,
F'(z) e L(X,Y).

C) F'is calledFréchet differentiablatx € U if F' is Gateaux differentiable at and if the
following approximation condition holds:

|F(x + h) — F(z) = F'(z)hlly = of[|hllx) for[[A]x — 0.
d) If Fis directionally-/G-/F-differentiable at every € V', V' C U open, ther¥' is called
directionally-/G-/F-differentiable orv.

Higher derivatives can be defined as follows:

If F is G-differentiable in a neighborhood of z, and F’ : V — L(X,Y) is itself
G-differentiable atr, then F' is called twice G-differentiable at. We write F”'(x) €
L(X,L(X,Y)) for the second G-derivative df atz. It should be clear now how theth
derivative is defined.

In the same way, we define F-differentiability of order

It is easy to see that F-differentiablity df at = implies continuity of /' at . We say
that ' is k-times continuously F-differentiable i is k-times F-differentiable and'® is

continuous.

We collect a couple of facts:

a) The chain rule holds for F-differentiable operators:
H(z) = G(F(z)), F,G F-differentiable at- and F'(z), respectively
— H F-differentiable at- with H'(z) = G'(F(z))F'(x).

Moreover, if F' is G-differentiable at- andG is F-differentiable at’(x), then H is G-
differentiable and the chain rule holds. As a consequerse tlae sum rule holds for F-
and G-differentials.

b) If F'is G-differentiable on a neighborhood ofand F’ is continuous at: then F' is
F-differentiable atr.

c) If F: XxY — Zis F-differentiable atz, y) thenF'(-, y) andF'(x, -) are F-differentiable
atx andy, respectively. These derivatives are called partial ééries and denoted by
F(x,y) andF}(z,y), respectively. There holds (sin¢eis F-differentiable)

F'(z, ) (ha, hy) = Fo(2,y)he + Fy(2,y)hy.
d) If F'is G-differentiable in a neighborhoddof z, thenforallh € X with {x +th : 0 <t <1} C
V, the following holds:
1 (2 +h) = F(2)lly < sup [[F'(z +th)h]y
0<t<1



S. Ulbrich: Optimization with Partial Differential Equats 39
If t € [0,1] — F'(xz +th)h € Y is continuous, then
1
Flx+h)—F(x) = / F'(z + th)hdx,
0

where theY -valued integral is defined as a Riemann integral.

We only prove the last assertion: As a corollary of the Hahn&®&a theorem, we obtain
that for ally € Y there exists @* € Y* with ||y*||,.. = 1 and

lylly = " y)vey.
Hence,

|F(x+h) = F(z)|ly = | Iﬂax 1dy*(l) with  dy(t) = (y*, F(z +th) — F(z))y«y.
Y lly«=
By the chain rule for G-derivatives, we obtain thits G-differentiable in a neighborhood
of [0, 1] with
d;* (t) = <y>k7 F/(I' + th)h)y*7y
G-differentiability ofd : (—¢,1 4+ ¢) — R means thatl is differentiable in the classical
sense. The mean value theorem yields
(', F(x+h) = F(x))y+y = dy-(1) = dy- (1) = dy-(0) = dy. (1) < sup d.(t)

0<t<1

for appropriater € (0, 1). Therefore,
|F(z+h)— F(z)|y = max dy(1) < sup sup (y", F'(x +th)h)y-y
lly*lly =1 lly* ||y =1 0<t<1

= sup sup (y*,F'(x +th)h)y-y = sup ||[F'(x+ th)h|y.
0<t<1 [ly* ||y =1 0<t<1
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Chapter 3

Existence of optimal controls

In the introduction we have discussed several examples tahapcontrol problems. We
will now consider the question whether there exists an agtisolution. To this purpose,
we need a further ingredient from functional analysis, thiecept of weak convergence.

3.1 Weak convergence

In infinite dimensional spaces bounded, closed sets arenget@ompact. In order to obtain
compactness results, one has to use the concept of weakgenge.

Definition 3.1.1 Let X be a normed space. We say that a sequéngg C X converges
weaklyto z € X, written
T — X,

<fL‘*,ZEk>X$,X_) <[L'*,£L'>X*’X ask —w oo Va*e X"

It is easy to check that strong convergenge— x implies weak convergence, — .
Moreover, one can show:

Theorem 3.1.2 i) Let X be a normed space and let,) C X be weakly convergent to
x € X. Then(zy) is bounded.

i) Let C' C X be a closed convex subset of the normed spac&henC is sequentially
weakly closed, i.e., for every sequeticg) C C with z;, — z one hasr € C.

Definition 3.1.3 A Banach spac« is calledreflexiveif the mappingr € X — (-, ) x« x €
(X™*)* is surjective, i.e., if for any** € (X*)* there exists: € X with

<JJ**,I*>(X*)*7)(* = <I*,JI>X*’X Vot e X",

41
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Remark: Note that for anyz € X the mappingz™ := (-, z)x+ x is in (X*)* with
12| x)- < [l]| ., SinCE

(27, 2) x= x| < [la™]] x|l x-
One can show that actuallys™ || ., = [|lz]|x. O

Remark: LPisforl < p < oo reflexive, since we have the isometric isomorphigiis* =
L4, 1/p+ 1/q = 1, and thus((LP)*)* = (L9)* = LP. Moreover, any Hilbert space is
reflexive by the Riesz representation theorém.

The following result is important.

Theorem 3.1.4 (Weak sequential compactnes®t X be a reflexive Banach space. Then
the following holds

i) Every bounded sequen¢e;) C X contains a weakly convergent subsequence, i.e.,
there are(xy,) C (zx) andx € X with z,, — z.

i) Every bounded, closed and convex suliset X is weakly sequentially compact, i.e.,
every sequencer;) C C contains a weakly convergent subsequefige) C (zy)
with x, — z, wherex € C.

For a proof see for example [AI99], [Yo80].

Theorem 3.1.5 (Lower semicontinuity)Let X be a Banach space. Then any continuous,
convex functionaF' : X — R is weakly lower semicontinuous, i.e.

ry —x = liminf F(x) > F(z).

k—o00

Finally, it is valuable to have mappings that map weakly evgent sequences to strongly
convergent ones.

Definition 3.1.6 A linear operatorA : X — Y between normed spaces is callsmmpact
if it maps bounded sets to relatively compact sets, i.e.,

M C X bounded = AM C Y compact.

Since compact sets are bounded (why?), compact operagasiemmatically bounded and
thus continuous. The connection to weak/strong convemgenas follows.

Lemma 3.1.7Let A : X — Y be a compact operator between normed spaces. Then, for
all (zy) C X, zx — =z, there holds
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Proof: Fromz, — z andA € £(X,Y') we see thatlz;, — Azx. Since(zy) is bounded
(Theorem 3.1.2), there exists a bounded/dett X with z € M and(x;) C M. Now as-
sumeAzx, 4 Ax. Then there exist > 0 and a subsequen¢dzy,) x with || Az, — Azl >

e forall k € K. SinceAM is compact, the sequen¢du;)x possesses a convergent sub-
sequencéAxy) — y. The continuity of the norm implies

ly — Az, > e.

But since(Axy)xr — Az and(Azy)x — y we must haveg) = Ax, which is a contradic-
tion. O

3.2 Existence result for a general problem

All linear-quadratic optimization problems in the intradion can be converted to a linear-
guadratic optimization problem of the form

. def 1 o2 9y 2
L Fly,w) = 511Qy — dally + 3 llully

subjectto Ay +Bu=g, u€ Uy, y € Y

(3.1)

whereH, U are Hilbert spaces;, Z are Banach spaces agde H, g € Z, Y is reflexive,
Ae L(Y,Z),Be L(U,Z),Q € LY, H) and the the following assumption holds.

Assumption 3.2.1
1. «>0,U, C Uisconvex, closed and in the case= 0 bounded.
2. Y,; C Y is convex and closed, such th{8t1) has a feasible point.

3. A€ L(Y, Z) has a bounded inverse.

Definition 3.2.2 A state-control pail(y, ) € Y,q X Uy,q is calledoptimalfor (3.1), if Ay +
Bu = g and

f(u) < fly,u) V(y,u) € Yog X Usa, Ay + Bu=g.
We prove first the following existence result for (3.1).

Theorem 3.2.3 Let assumption 3.2.1 hold. Then problé&l) has an optimal solution
(g,u). If & > 0 then the solution is unique.
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Proof: Denote the feasible set by
Waa :={(y,u) €Y x U : (y,u) € Yoq X Usq, Ay + Bu = g} .
Sincef > 0 andWW,, is nonempty, the infimum

fr=inf  f(y,u)

(y7u)ewad

exists and hence we find a minimizing sequefigeu,) C W, with
lm f(yx,ur) = f*.
k—o0

The sequencéuy) is bounded, since by assumption eithgy, is bounded orv > 0. In the
latter case the boundedness follows from

[0
S (e, u) > §||Uk||U

Since,A € L(Y,Z), B € L(U,Z), andA™! € L£(Z,Y), this implies that also the state
sequencéy;) given byy, = A~'(g — Buy) is bounded. Hence,

(s ur) C Waa N (By (r) x By(r)) = M

for r > 0 large enough, wherBy (r), By (r) denote the closed balls of radiu@n Y, U. By
assumptiory,, x U, is closed, convex and thus aldq,, is closed and convex. Thus, the set
M is bounded, closed and convex and consequently by Theofem@eakly sequentially
compact. Therefore, there exists a weakly convergent suleseq .., ux,) C (yx, ux) and
some(y, u) € Wy With (y,, ug,) — (y,u) asi — oo. Finally, (y,u) € Y xU — f(y,u)

is obviously continuous and convex. We conclude by Theordn® 3hat

where the last inequality follows fror(ry u) € Weq. Thereforey, u) is the optimal solu-
tion of (3.1). Ifa > 0 thenu — f(A~'(g — Bu),u) is strictly convex, which contradicts
the existence of more than one minimizér.

Remark Actually, the reflexivity ofY” is not needed. In fact, we can use that+ Bu = g
impliesy = A~1(¢g — Bu) and thus the problem (3.1) is equivalent to

min fu) st uw€ Uy

fw) = f(A g — Bu),u), Uw={ucU: u€Uy A (g~ Bu) € You}.

Itis easy to see th@ft is continuous and convex aid, is closed and convex. An argumen-
tation as before shows that a minimizing sequence is bouadddhus contains a weakly
convergent subsequence convergent to sanee U,,. Lower semicontinuity implies the
optimality of . Settingy = A~'(g — Bu), we obtain a solutioffy, ) of (3.1).
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3.3 Existence results for nonlinear problems

The existence result can be extended to nonlinear problems

i subjectto £ =0 U, Y4,
o nin f(y,u) subj (y,u) =0, u €U, Y€ Ya (3.2)

f:YxU—=R,E:Y xU — Z continuous{J andY reflexive Banach spaces.

Similarly as above, existence can be shown under the fallgwssumptions.

Assumption 3.3.1
1. U,y C U is convex, bounded and closed.
2. Y,; C Y is convex and closed, such th{&t2) has a feasible point.

3. The state equatio”(y, u) = 0 has a continuous, bounded solution operatoE
Uga — y(u) € Y.

4. (y,u) € Y xU — E(y,u) € Z is continuous under weak convergence, i.e.,
(Yg, ur) — (y,u) inY x U impliesE(yg, up) — E(y,u)in Z.

5. f is sequentially weakly lower semicontinuous.

To show 4., one uses usually compact embeddingsc Y to convert weak convergence
in Y to strong convergence in.

Example 3.3.2 To show 4. for the semilinear state equation
yeY :=H'(Q)— BEy,u) = -Ay+y* —uecY* =2,

one can proceed as follows. LetC R" open and bounded with Lipschitz boundary. Then
the imbedding” := H'(Q2) cc L°(Q2) is compact for = 2, 3. Thereforey, — y weakly

in Y impliesy, — y strongly in L?(Q2) and this implies (see below} — ¢ strongly in
LP3(Q) = L°?(Q)* C Y* (note thaty” C L*2(2)), and thus strongly iry*.

To provey; — 53 in L°/3(Q), we first observe that}, 4> € L*/?(€2) obviously holds. Next,
we prove
b7 — a®| < 3(lal* + [b]*)[b — al.

In fact, for appropriatel € [0, 1] we have
[ — a’] = 3|(a + (b — ))*(b — a)| < 3max(|af*, [o]*)[b — a| < 3(|al* + [b]*)[b — al.
Therefore,

lve — vl psss < 3 wi + ¥5) vk — ylll zsrs < 3llwilyr — ylll 1o + 3167 |y — ylll o5



46

We estimate, using thedttler inequality withp = 3/2 andq = 3,

3/5 3/5 3/5 2/5 1/5
O w PR < w2 o w2 P11 ([ wl)]

2
||U2UJHL5/3 = |[|v L L3/2 L3 = )2 L= HUHL5HwHL5'

This shows

2 2
”yl?; - y3HLs/3 < ||yl%|yk = Y|l psss + ||y2|yk —ylllss < (lwellzs + lullzs)llye — yll s
—2[lyl|7s -0 =0 asy, — yin L3(Q).

We summarizey, — y in Y impliesy;, — y in L5(£2). From this it follows that} — 3

in L°/3(Q2) which impliesy; — »®in Y* = Z. Hence, 4. follows, since the remaining linear
operators inE(y, u) are bounded.

3.4 Applications

3.4.1 Distributed control of elliptic equations

We apply the result first to the distributed optimal contrbasteady temperature distribu-
tion with boundary temperature zero.

. e 2 « 2
min f(y7u)d=f§||y—yd“m(9) + §||U||L2(Q)
subjectto — Ay =~yu on{, (3.3)
y=0 ono,

a<u<b onf,

where
vy e L¥(Q)\ {0}, v>0,a,bc L*(Q), a<b.

The form of f and the assumptions anb suggest the choic€ = L?(2) and
Uw={uelU:a<u<b}.

ThenU,, C U is bounded, closed and convex.

We know from Theorem 2.3.4 that the weak formulation of therimtary value problem

—Ay =~yu onf),
y=0 ono,

can be written in the form

Find y e Y := Hy(Q):  a(y,v) = (yu,v)r2q) Vv €Y.
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with a(y,v) = [, Vy - Vudz, or short
Ay + Bu =0,

where A € L(Y,Y™), is the operator representing see (2.17), and3 € L(U,Y™) is
defined throughBu = —(yu,-)120). By Theorem 2.3.4A4 € L(Y,Y™) has a bounded
inverse. Therefore, Assumption 3.2.1 is satisfied with theiae 7 = Y. Finally, setting
g = 0andQ = Iy with the trivial, continuous imbedding; : y € Y — y € U, (3.3) is
equivalent to (3.1).
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Chapter 4

Reduced Problem, Sensitivities and
Adjoints

We consider again optimal control problems of the form

min  f(y,u) subjectto E(y,u) =0, (y,u)€ W, (4.2)
yeYuelU

wheref : Y x U — R is the objective functionf : Y x U — Z is an operator between
Banach spaces, antl,; C W :=Y x Z is a honempty closed set.

We assume that and E are continuously F-differentiable and that the state egquat
E(y,u) =0

possesses for each (“reasonable”c U a unique corresponding solutigyfu) € Y.
Thus, we have a solution operaterc U — y(u) € Y. Furthermore, we assume that
E,(y(u),u) € L(Y, Z) is continuously invertible. Then the implicit function tvem en-
sures that(u) is continuously differentiable. An equation for the detiva y/'(u) is ob-
tained by differentiating the equatidiy(y(u), u) = 0 with respect tau:

E,(y(u),w)y'(u) + Ey(y(u), u) = 0.
Insertingy(u) in (4.1), we obtain the reduced problem
anig fu)™ f(y(u),u) subjectto ue Uyg™ {uecU : (y(u),u) € Wa}. (4.2)
Itwill be important to investigate the possibilities of cpating the derivative of the reduced
objective functionf.
Essentially, there are two methods to do this:
e The sensitivity approach,

e The adjoint approach.

49
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4.1 Sensitivity approach

Sensitivities are directionql derivatives. Rore U and a directiors € U, the chain rule
yields for the sensitivity off:

df(u,s) = {f'(u),s)v-w = {f,(y(w),u),y (W)s)y-y + (Fuly(w),u), s)o- o

In this expression, the sensitividly(u, s) = y'(u)s appears. Differentiating (y(u), u) = 0
in the directions yields

E,(y(u), )y (w)s + E(y(u), u)s = 0.
Hence, the sensitivity,y = dy(u, s) is given as the solution of the linearized state equation
E,(y(u), u)dsy = —E;,(y(u), u)s.

Therefore, to compute the directional derivatiygw, s) = (f(u), s)y- ¢ via the sensitivity
approach, the following steps are required:

1. Compute the sensitivity,y = dy(u, s) by solving
B (y(u),u)dy = —E, (y(u), u)s. (4.3)

2. Computelf(u,s) = (f'(u), s)y-y via
df(u’ S) = (f;(y(U), u), 5sy>Y*7Y + (f;(y(U), u)? S>U*7U'
This procedure is expensive if the whole derivatﬁ’/@) is required, since this means that
for a basisB of U, all the directional derivatives
df(u,b), be B,

have to be computed. Each of them requires the solution ofinearized state equation
(4.3) withs = 0.

This is an effort that grows linearly in the dimension(of

Actually, computing all sensitivities of,y = y'(u)b, b € B, is equivalent to computing
the whole operatoy’(u). As we will see now, the derivative gf can be computed much
cheaper by solving a single adjoint equation.

4.2 Adjoint approach

We now derive a more efficient way of representing the devieaf . Consider (4.1) and
define the Lagrange functiah: Y x U x Z* — R,

L(y,u,p) = f(y,u) + (p, E(y,u)) 2+ z-
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Insertingy = y(u) gives, for arbitrary € Z*,

flu) = fy(u),u) = fy(u), u) + (p, E(y(u), u))z+.z = L(y(u),u, p).
Differentaiting this, we obtain

(f'(w), s)oe v = (L (y(u), u,p), o (W)shyey + (L (y(u), u,p), s)oe . (4.4)
Now we choose a special= p(u) € Z*, namely such that thedjoint equatiorholds

L, (y(u),u,p) = 0. (4.5)
To write the adjoint equation in a concrete form, we note tbaall d € Y
(Ly (Y, u,p), d)yy+y = ([ (Y, u), d)y=y+(p, By (y, w)d) 2= 2z = ([, (y, w)+E, (y,u)"p, d) vy
Therefore,
Ly (y(u),u,p) = fi(y(u),w) + E(y(u),u)p = f(y(w),w) + (0, B, (y(uw),w) )y-y

and the adjoint equation (4.5) reads

Adjoint Equation:
E)(y(u),u)*p = —f;(y(u), ). (4.6)

Completely analogous we obtain
Ly(y(u),u,p) = fi(y(u),w) + E,(y(u),w)p = fi(y(u),w) + (p, B, (y(u),u) ) 2+ 2.

Now, choosing thadjoint statep = p(u) € Z* according to the adjoint equation (4.6), we
obtain from (4.4) that

f'w) = Ej(y(w),u)p(u) + fi(y(u), ).

The derivativef’(u) can thus be computed via the adjoint approach as follows:

1. Compute the adjoint state by solving the adjoint equation

Ey(y(u),u)p = = f(y(u), ).

2 Computef’(u) via

~

f'(w) = B (y(u), u)'p + fuly(u),w) = fi(y(w), w) + (p, E,(y(u), ) ) 2+ 2.
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4.3 Application to a linear-quadratic optimal control prob-
lem

We consider the linear-quadratic optimal control problem

. def L RPRTE A C TP
i fly,w) = 511Qy = gally + 3 llully

subjectto Ay+ Bu=g¢g, u€ Uy, y € Y

(4.7)

whereH, U are Hilbert spaceg/, Z are Banach spaces agpgde H,g € Z, A € L(Y, Z),
Be L(U,Z),Q € L(Y, H). Moreover, let Assumption 3.2.1 hold.

E(y,u) = Ay + Bu — g, Waq = Yaq X Upq.
By assumption, there exists a continuous affine linear swluperator
Usursy(u)= A" (g— Bu) €Y.
For the derivatives we have

<f;(y> u), sy)y=y = (QY — qa, Qsy) 1, = (Q"(Qy — qa), sy) vy
(fuly,u), su)v-v = a(u, s.)u,

E:;(ZJ?U)S?J = Asy,

E;(y>u)3y = Bsy,

Therefore,
[y, u) = (Qy — ¢a, Q)
f’L/L(y7 u) = O‘(uw ')Uv
E,(y,u) = A,
E,(y,u) = B.

If we choose the Riesz representatiéiis= U, H* = H, then

f;(ya u) = (Qy — 94, Q)u = (QY — 44, Q") =1 = (Q"(QY — ), " )v+=y = Q" (Qy — qa),

foly,u) = a(u, )y = au.

The reduced objective function is

flu) = Fyta),w) = S1Q(A (g — Bu)) — aully + Sl
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For evaluation off, we first solve the state equation
Ay+ Bu=g

to obtainy = y(u) and then we evaluatg(y, u). In the following, lety = y(u).
Sensitivity Approach:

Fors € U, we obtaindf (u, s) = (f'(u), s)y- v by first solving the linearized state equation
Adsy = —Bs

for 9,y and then setting
df<u7 S) - ((Qy - Qd)7 Qésy)H + O[(’LL, 3)U~
Adjoint Approach:

We obtainf’(u) by first solving the adjoint equation

Ap=—-(Qy—q1),Q)n (=-Q(Qy—qa) if H =H)
for the adjoint state = p(u) € Z* and then setting

f'(u)=B*p+a(u,- )y (=Bp+au ifU =U).

4.3.1 Application to distributed control of an elliptic equation

Next, let us consider the concrete example of the elliptiticd problem

min ) 25 [ o) <)) do+ 5 [ e da

2 2
subjectto — Ay =~yu onQ,
dy B
—= == (Yo — Q
ay K (ya y) Ona 9

[<u<r onf.
The appropriate spaces are
U=L*Q), Y=H(Q
and we assume
LreU, I<r, ya€L*(Q), a>0, y,eLl*0Q), velL>Q)\{0}, v=>o.

The coefficienty weights the control ang, can be interpreted as the surrounding tempera-
ture in the case of the heat equatign> 0 andx > 0 are coefficients.
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The weak formulation of the state equation is

yeY, aly,v) = (vu,v)r2q) + ((B/K)Ya:V)12000) YV EY = Hl(Q) (4.8)
with
aly.0) = [ V" Voda+ (8/r)y.0)szom

By the existence and uniqueness result of Theorem 2.iBduces an operatot € L(Y,Y™),
which has a bounded inverse.

Hence, we se¥ = Y*, H = L?*(Q2) and
e A e L(Y,Y")the operator induced hy, i.e., Ay = a(y, -),
e Be L(UY™), Bu= —(yu,")2q)
e g€ Y, g=((B/K)Ya; ) 209
e Uy={ueclU:a<u<bon(l},
e Qe L(Y,H),Qy=y.

Then, we arrive at a linear quadratic problem of the form)(#¢hat satisfies Assumption
3.2.1.

Adjoint approach
Variant 1: Determine the adjoint operators
We compute the adjoints. Note that all spaces are Hilbertespand thus reflexive. In

particular, we identify the dual df = L? with U by working with (-, )i v = (-, ) 12(0)-
We do the same witlif = L2. We thus have

A" € L(Z*,Y*) = L(Y*™,Y*) = L(Y,Y™),
B* € L(Z*,U*) = L(Y™,U) = L(Y,U),
Q" € L(H",Y*) = L(H,Y").

For A* we obtain
(A'v, w)y«y = (v, Aw) z+ z = (Aw, V)y+y = a(w,v) = a(v,w) = (Av,w)y+y Yv,w €Y.
Here, we have used that obviuouslys a symmetric bilinear form. Thereford,” = A.

For B* we have

(B*v,w)y = (B*v,w)y=p = (v, Bw) z+ z = (v, Bu)yy» = (v, —yw) 2
=—(w,w)y YveY, wel.
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HenceB*v = —yv.
Now, sinceQ)y = y, we have This means that
foy,u) = (Qy — ya, Q) r20) = (¥ — Ya, -) 2@
Moreover,
fo(y,u) = a(u, ) 2 = au.
Taking all together, the adjoint equation thus reads
Ap = —(y — Yd, ')L?(Q),
which is the weak form of

—Ap=—(y—yq) onQ,

@+ﬁp:0 onofl,
oV kK

The adjoint gradient representation then is

f'(u) = B*p(u) + foy(u),u) = —yp + au.

Variant 2: Work directly with the Lagrangian

If the PDE constraint is given in weak form, it is often morengenient to work directly
with the Lagrangian.

The operatoly : Y x U — Z = Y™ is given by the weak formulation (4.8), i.e., for all
p € Z* =Y we have

(p, E(y,u)) 2=z = a(y,p) — (vu,p)12(2) — ((B/K)Yar D) 12(002)-
Hence, the Lagrangian has the form

L(y,u,p) = %H?/ - yd||2L2(Q) + %HUH;(Q)G(%P) — (Yu, p)2() — ((B/K)Ya, P)12(00) -
The adjoint equation is now
L (y(u),u,p) =0 <= (L,(y(u),u,p),v)y-y =0 VYveY.
Inserting the Lagrangian, the adjoint equation reads
(y — yd7v)L2(Q) +a(v,p) =0 Vvey.

This is exactly the same adjoint equation as in Variant 1€(tloata(v, p) = a(p,v). The
reduced derivative is now given by

~

f'(w) = L, (y(uw), u,p) = a(u, ‘)LZ(Q) — (v, ')L2(Q) = (au —p, ')L2(Q) = Qu —p,
where we have used the identification= U* in the last equality.
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4.4 Second derivatives

We can use the Lagrange function based approach to derigetoad derivative of .

To this end, assume thgtand E are twice continuously differentiable. As already noted,
for all p € Z* we have the identity

fu) = f(y(u),u) = Ly(u), u, p).

Differentiating this in the direction; € U yields (see above)

(f'(w), s1)vew = (L (y(w),u, ),y (W)st)yey + (L (y(u), u, p), s1)oeo.
Differentiating this once again in the directiep € U gives

(f"(u)sz, s1)u- 0 = (L (y(u), u,p), 5" (w)(s1, 82)) vy
+ (Lyy (y(w), u, )y (w)s2, 4 (u)s1)y= v
+ (Lyu(y(w), u, p)s2,yf (u)s1)y+y
<Liiy(y(u) ;)Y ()52, 81) v+
+ (Lo (y(w), u, p)sa, s1)u v
Now we choose = p(u),i.e.,L (y(u),u,p(u)) = 0. Then the term containing’ (=) drops

out and we arrive at

(f"(u)s2, s1 )0 = (Lo, (y(w), u, p(w))y (u)sz, ¥ (w)s1)y-y

+ (Lo (y(u), u, p(u))so, ¥ (w)s1)y+ v
+ <Lgy(y(u)> u,p(u))y/(u)sg, 31>U*,U
+ (Lo (y(u), u, p(u))sa, s1)v- v

This shows
F"(u) = o/ ()L}, (y(u)
+ Ly, (y(u), u, p(u)
= T'(u)" Ly, (y(u)

_ (V) v Ly Ly
T(u) = ( I ) e LWUY xU), L, = <LZy o)
Herel, € L(U,U) is the identity.
Note thaty'(u) = —E; (y(u), u) ' E;,(y(u), u) and thus

- (") - (_E‘{’(y(m’u)f;&(y(u)’u>)- @10)

"(u) + Ly (y(w), u, p(u)) (4.9)
)

with

Usually, the Hessian representation (4.9) is not used tgaterthe whole operatq‘?”(u).
Rather, it is used to compute operator-vector-prodyi¢ts)s as follows:
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1. Compute the sensitivity

55y =y (u)s = —E, (y(u),u) " E, (y(u),u)s.
This requires one linearized state equation solve.

2. Compute
(m) _ <L;’y(y(U), u, p(u))dsy + Ly, (y(w), u7p(u))8)
hy Ly (y(u), u, p(u))dsy + Ly, (y(u), u, p '

Y

3. Compute
hs =y'(u)"ha = —E, (y(u), u)" Ey(y(u),u)”"hi.
This requires and adjoint equation solve.
4. Setf"(u)s = hy + hs.

This procedure can be used to apply iterative solvers to tvetdh equation
fru)st = = f' ().
Example:

For the linear-quadratic optimal control problem (4.7)wit* = U and H* = H we have

L(y,u,p) = ( u) + (p, Ay + Bu) z- z,
L;(y p) = Q" (Qy —qa) + A'p,
L, (y,u,p) = OéquB*p,
Ly, (y,u,p) =
Ly, (y,u,p) =
L, (u y,p) =
L) (y,u,p) = OJU

From this, all the steps in the above algorithm can be deasily.



58



Chapter 5

Optimality conditions

5.1 Optimality conditions for simply constrained problems

We consider the problem

min flw) st wesS, (5.1)

wherell is a Banach spac¢,: W — R is Gateaux-differentiable anfl C 1/ is nonempty,
closed, and convex.

Theorem 5.1.1 Let W be a Banach space artl C W be nonempty and convex. Further-
more, letf : V' — R be defined on an open neighborhoodSol etw be a local solution of
(5.1)at which f is Gateaux-differentiable. Then the following optimality ciiwh holds:

wes, (fl(w),w—w)wyw>0 VweS. (5.2)
If fis convex orS, the condition(5.2)is necessary and sufficient for global optimality.

If, in addition, f is strictly convex orS, then there exists at most one solutio(®fL), or,
equivalently, of5.2).

If W is reflexive S is closed and convex, anfdis convex and continuous with

lim f(w) = oo,
weS, [|wl|y, —o0

then there exists a (globat local) solution of(5.1).

Remark: A condition of the form (5.2) is called variational inequgli

Proof: Letw € S be arbitrary. By the convexity & we havew(t) = w +t(w —w) € S
forall t € [0, 1]. Now the optimality ofw yields

f(w+t(w—w))— f(w) >0 Vtel0,1]
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and thus ) _ _
(@), 0 — @)yegy = li TET 0 = 0)) = f(w)
t—0+ t
Sincew € S was arbitrary, the proof is complete.

> 0.

Now let f be convex. Then
fw) = f(
In fact, for allt € (0, 1],
f(@ +t(w —w)) < (1 =1)f(w) + tf (w).

(5.3)

&
WV
=
8
=
|
&
3
5
<C
g
m
(V5)

Hence,
F(w) — f(w) = (1—1t)f(w) +ttf(w) — f(w) _ flw+t(w _t w)) — f(w) 0

Now from (5.2) and (5.3) it follows that
f(w) — f(w) > (f'(w),w —0)ww >0 YweS.

Thus,w is optimal.

(f' (@), w — w)wew.

If fis strictly convex and,, w, are two global solutions, the poifi; +w,)/2 € S would
be a better solution, unlegs = ws.

Now let the assumptions of the last assertion hold an@ugj € S be a minimizing se-
quence. Thertwy) is bounded (otherwisé(w;) — oc) and thus(wy) contains a weakly
convergent subsequente;)x — w. SincesS is convex and closed, it is weakly closed
and thusw € S. From the continuity and convexity gf we conclude thay is weakly
sequentially lower semicontinuous and thus

T _ .
fw) < Jm  F(we) = Inf fw)
Thus,w solves the minimization probleni]

In the case of a closed convex sein a Hilbert spacell/, we can rewrite the variational
inequality in the form
@ — P(w =7V f(w)) = 0

wherey > 0 is a fixed parameter ard f (w) € W is the Riesz representation #f(w) €
W=,

To prove this, we need some knowledge about the projectitmaosed convex sets.

Lemmab5.1.2 LetS C W be a nonempty closed convex subset of the Hilbert sgaead
denote byP : W — S the projection ontds, i.e.,

P(w) €S, |Pw)=wly =minfo—wl, YweW

Then:
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a) P is well-defined.
b) For all w,z € W there holds:

z=Plw) <=
ze€S8S, (w—zv—2z)w <0 Vves.

c) P is nonexpansive, i.e.,

[1P(v) = P(w)|ly < [lv—wlly Vov,weW.

d) P is monotone, i.e.,
(P(v) = P(w),v —w)y >0 Yov,weW.

Furthermore, equality holds if and only #(v) = P(w).
e) For all w € S andd € W, the function

def 1

O = P+ td) = wly, >0,

IS nonincreasing.

Proof: a):
The functionW > w — ||w||§v is strictly convex: For alkv,, wy, € W, w; # wy, and all
t€(0,1);
[ + t(wy — wi) [l = llwi|[fy + 2t(wi, ws — wi)w + t¥]|wa — wnfy, =: p(t).
The function on the right is a strictly convex parabola. Henc
[y + t(ws — w13y = p(t) < (1= )p(0) + tp(1) = (1 — ) [Jwr |5 + tlws 5.

Therefore, for alkw € W, the function

1
fv)=5llv - wlly
is strictly convex. Furthermore, it tendsdo as||v||,,, — oo. Hence, by Theorem 5.1.1, the
problem

min f(v)

veES

possesses a unique solutigrand thusP(w) = v is uniquely defined.
b):
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The functionf defined above is obviously F-differentiable with
(f'(v),s)wew =(v—w,s)w VseW.

SinceP(w) = v minimizesf on S, we have by Theorem 5.1.1 that= P(w) if and only
if z € S and

zeS8S, (f'lyv—2)ww=Z—-wuv—2wy>0 YVves.
c):
We use b):

(v = P(v), P(w) = P(v))w
(w — P(w), P(v) — P(w))w < 0.

Adding these two inequalities gives
(w—v+P(v) = P(w), P(v) = P(w)) = (w—v, P(v) = P(w))w +]||P(v) = P(w)[|y <0.
Hence, by the Cauchy-Schwarz inequality

1P(v) = P(w)lly, < (v —w, P(v) = P(w)w < [[o = wlly [|P(v) = P(w)]ly,.  (5.4)
d):
The assertion follows immediately from the first inequaiity5.4).
e):

We follow [CM87]. Lett > s > 0. If ||P(w + td) — wl||,, < [[P(w+ sd) —w]|y, then
obviously¢(s) > ¢(t).

Now let || P(w + td) — wl|y > || P(w + sd) — wly
Using the Cauchy-Schwarz inequality, for amy € W we have
[olly (u, u = v)w — [lully (v, u = v)w
= ol llullsy = 1ol (u 0)w = lully (0, w)w + lully vl

2 2
> [ollw llullw = Mol llellw 1ol = lully ol llully + Tully ol = 0.

Now, setu := P(w + td) — w, v := P(w + sd) — w, andw, = w + 7d. Then

(u,u —v)w — (td, P(wy) — P(ws))w =

(v,u—v)w — (sd, P(w;) — P(ws))w =
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Thus,
0 < [Jolly (u, u —v)w — [lully (v, u —v)w
< Jolly (td, P(wi) — P(ws))w — |lully (sd, P(wy) — P(ws))w
= (tl[vlly — sllully)(d, P(w) — P(ws))w-

Now, due to the monotonicity aP,

1
t—s

(d, P(w;) — P(ws))w =

(wy — wg, P(w;) — P(wg))w > 0,
sinceP(w;) # P(ws). Therefore,

0 < tlvlly = sllully = ts(o(s) = o(t)).

O

Lemma5.1.3 Let W be a Hilbert spaceS C W be nonempty, closed, and convex. Fur-
thermore, letP denote the projection ontS. Then, for ally € W and ally > 0, the
following conditions are equivalent:

wesS, (y,v—w)y >0 Voves. (5.5)
w— Pw—~y)=0. (5.6)

Proof: Let (5.5) hold. Then withw., = w — vy we have
(wy —w, v —w)w =—y(y,v—w)w <0 Vves.

By Lemma 5.1.2 b), this implies = P(w,) as asserted in (5.6).
Conversely, let (5.6) hold. Then with the same notation as@b@ obtainy = P(w,) € S.
Furthermore, Lemma 5.1.2 b) yields

(y,v—w)W:— (w'y_wyv_w>20 \V/UGS

1
Y
(]

Corollary 5.1.4 Let W be a Hilbert space and C W be nonempty, closed, and convex.
Furthermore, letf : V' — R be defined on an open neighborhoodsot etw be a local so-
lution of (5.1)at which f is Gateaux-differentiable. Then the following optimality citiah
holds:

w = P(w =~V f(w)) (5.7)

Here,~ > 0 is arbitrary but fixed andV f(w) € W denotes the Riesz-representation of
f(w) e W,
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5.2 Optimality conditions for control-constrained problems

We consider a general possibly nonlinear problem of the form

i subjectto F = )
(y,J)nel}rfle fly,u) | (y,u) =0, u € U (5.8)

We make the

Assumption 5.2.1

1. U,q C U is nonempty and convex.

2. f: Y xU—RandFE : Y x U — Z are continuously Rechet differentiable and,
Y, Z are Banach spaces.

3. Forallu € V in a neighborhood” C U of U,4, the state equatio®'(y, u) = 0 has
a unique solutiory = y(u) € Y.

4. B (y(u),u) € L(Y, Z) has a bounded inverse for all€ U,g.
Obviously, the general linear-quadratic optimizationigheon

. der 1 o2 9y 2
L. Fly,u) = 51Qy — gally + S llully

subjectto Ay + Bu =g, u € Uy,

(5.9)

is a special case of (5.8), whefg U are Hilbert spaces;, Z are Banach spaces aggdc
H,geZ, Ae L(Y,Z),Be LU, Z),Q € L(Y, H). Moreover, Assumption 3.2.1 ensures
Assumption 5.2.1, since (y, u) = A.

5.2.1 A general first order optimality condition

Now consider problem (5.8) and let Assumption 5.2.1 holdeTiwve can formulate the
reduced problem
min f(u) S.t. u € Uy (5.10)

uelU
with the reduced objective functional

N

fu) = f(y(u), u),

whereV > u — y(u) € Y is the solution operator of the state equation. We have the
following general result.
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Theorem 5.2.2 Let Assumption 5.2.1 hold. ifis a local solution of the reduced problem
(5.10)thenu € U,, andu satisfies the variational inequality

(fl(w),u— @y >0 YVueUyg. (5.11)

Proof: We can directly apply Theorem 5.1.11

Depending on the structure 6f,; the variational inequality (5.11) can be expressed in a
more convenient form. We show this for the case of box cométra

Lemma5.2.3LetU = L*(Q), a,b € L*(), a < b, andU,, be given by
Uad:{UELQ(Q) : agugb}

We work withU'* = U write V f(u) for the derivative to emphasize that this is the Riesz
representation. Then the following conditions are equintle
) € Uw (Vi),u—u)y >0 Yué€ Uiy

b
i)y @e Uy Vf(u)(x) b(z), fora.a.ze .
b

iii) There arez,, z, € U* = L*(Q2) with

iv) Foranyy > 0: @ = Py (@ —~Vf(a)), with Py, (u) = min(max(a,u),b).

Proof: ii) = i): If Vf(u) satisfies ii) then it is obvious tha&t f(a) (u — @) > 0 a.e. for
all v € U,y and thus

(Vf (@), u— @)y = /QVf(a)(u —@)dr >0 Vue U

i) = ii): Clearly, ii) is the same as
A_ >0 ae.onl, ={z: a(zr) <u(zr) <blx)}
Vi@ {S 0 a.e.onl,={z: a(z) <u(x) <bx)}

Assume this is not true. Then, without loss of generalitgreéhexists a set/ C I, of
positive measure with/ f(u)(z) < 0 on M. Now chooseu = u + 15, (b — u). Then
u € Uy, u —u > 00nM andu — u = 0 elsewhere. Hence, we get the contradiction

(Vf(a),u—a)y = /va<u) (b—a) dx < 0.

<0 >0
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i)y — iii): Let z, = max(Vf(a),0), z = max(—Vf(a),0). Thena < @ < b and
Za, Zp = 0 hold trivially. Furthermore,
u(z) > a(z) = V() (z) < 0= z(
u(z) < b(zr) = Vf(a)(z) > 0= z(z) =0.

8
~—
I

i) = ii):
a(z) < u(x) < b(x)
a(x) = u(x) < b(x) >
a(z) < a(x) = b(z) = 2, = 0 = Vf(a) = -3 <
i) <= iv): This is easily verified.

Alternatively, we can use Lemma 5.1.3 to prove the equivdedi i) and iv). O

5.2.2 Necessary first order optimality conditions

Next, we use the adjoint representation of the derivative

~

f'(u) = E,(y(u),u)p(u) + f,(y(u),u), (5.12)
where the adjoint statg(u) € Z* solves the adjoint equation
E,(y(u),u)p = —f(y(u), u). (5.13)

For compact notation, we recall the definition of the Lageafmgnction associated with
(5.8)
L:YXUXZ*_)Ra L(yauap):f(y7u)+<p7E(y7u)>Z*,Z

The representation (5.12) gff(a) yields the following corollary of Theorem 5.2.2.
Corollary 5.2.4 Let (y,u) an optimal solution of the probler{5.8) and let Assumption

5.2.1 hold. Then there exists an adjoint state (or Lagrang#ipiier) p € Z* such that the
following optimality conditions hold

E(g,u) =0, (5.14)
E,(g,u)"p = —f,(5, w), (5.15)
U € Uada <f1;(g7 ﬂ) + E’:L(ﬂ? ﬂ)*ﬁa U — a>U*,U Z 0 Vue Uad7 (516)
(5.17)
Using the Lagrange function we can wri®14)}(5.16)in the compact form
L (y,u,p) = E(y,u) =0, (5.14)
L, (y,4,p) =0, (5.15)

€ Uy, (LL(§,u,p),u— -y >0 YVu€Uy. (5.16)
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Proof: We have only to combine (5.11), (5.13), and (5.12).

To avoid dual operators, one can also use the equivalent form

E(j, 1) =0, (5.18)
<L;(gv a7ﬁ)7U>Y*,Y =0 VoveY (519)
€ Uy, (LL(G,4,p),u—uppy >0 Yu€ Uiy (5.20)

5.2.3 Applications
General linear-quadratic problem

We apply the result to the linear-quadratic problem

. o 1 2 « 2
i fly,u) = S1Qy = qally + S llully

subjectto Ay + Bu=g, u€ Uy

(5.21)

under Assumption 3.2.1. Then
E(y,u) =Ay+Bu—g, E,(y,u)=A, E,(y,u)=B

and Corollary 5.2.4 is applicable. We only have to complijeand L;, for the Lagrange
function

L(y,u,p) = f(y,u) + (p, Ay + Bu — g) 2+ z
1 a
= §(Qy —qa, QY — qa)u + §(u, w)y + (p, Ay + Bu — q) 7+ 7.
We have with the identificatiofil* = H andU* = U

<L;<g7 67]5)7 U>Y*,Y = (Qg — 44, QU)H + <p7 AU)Z*,Z

N . (5.22)
=(Q"(QY — qa) + A'p,v)y-y VveY
and
(L;<ga avp)a w)U = Q/(Z:L, w)U*‘i‘ <]3, Bw>Z*7Z (523)
= (au+ B*p,w)y VweU.
Thus (5.14)—(5.16) take the form
A'p = —Q"(QY — qa), (5.25)

€ Uy, (au+Bpu—u)y>0 YVué€ Uy (5.26)
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Distributed control of elliptic equations

We consider next the distributed optimal control of a stet@hyperature distribution with
boundary temperature zero

. 1 2 Q 2
min Flysw) = Slly = vallzz) + 5 lulliag
subjectto — Ay =~u on¢f, (5.27)
y=0 onos,

a<u<b onf,

where
v e L®(Q)\ {0}, v>0,a,bc L*(Q), a<b.

We have already observed that (5.27) has the form (5.21) with
U=H=1I*Q), Y=H{Q), Z=Y" g¢g=0 Q=Ipy,
and
AELYY), Ayl =aly) = [ Ty Tude
Be LUY™), (Bu,v)y-y = —(7yu,v)2q).
As a Hilbert spaceY is reflexive andZ* = Y** can be identified witly” through
Py )y =Y\ p)y-y VY €Y, peY =YY",

This yields
(p, AY) 2+ z = (Ay,p)y=y = aly,p) = a(p,y).

Let (y,u) € Y x U be an optimal solution. Then by Corollary 5.2.4 and (5.22R3%pthe
optimality system in the form (5.18)—(5.20) reads

a(y,v) — (Y, v)2@) =0 Vovey, (5.28)
(5= ya-v)120 +a(p,0) =0 Vv ey, (5.29)
a<u<b (ct—~vypu—u)i(Q)>0, YueclU a<u<b. (5.30)

Now the adjoint equation (5.28) is just the weak formulatdn
—Ap=—(y—va), DPloa=0.

Applying Lemma 5.2.3 we can summarize
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Theorem 5.2.51f (7, u) is an optimal solution of5.27)then there exist € H; (), Z4, 2 €
L?(Q) such that the following optimality conditions hold in the weekse.

— Ay =71, Yloa =0,
—Ap=—(¥—wy4), Plaa=0,
au—Yp+ 2z — 2, =0,

a, z,>0, Z,(u—a)=0,
b, z,>0, Zz(b—u)=0.

Distributed control of semilinear elliptic equations

We consider next the distributed optimal control of a semeéir elliptic PDE:

) 1 a
min fly,u) = §|Iy - ?/dHiQ(Q) + 5”““%2(9)
subjectto —Ay+y®=~u onQ, (5.31)
y=0 onos,

a<u<b onf,

where
v e L>®(Q)\ {0}, ~v>0,a,be L), a<b.

Letn < 3. By the theory of monotone operators one can show that thestsaxcontinuous
solution operator of the state equation

uelU:=L*Q) - yeY = H(Q).

Let A : H}(Q) — H}(Q2)* be the operator associated with the bilinear far(, v)
Jo Vy - Vu dz for the Laplace operater Ay and let

N:y—°
Then the weak formulation of the state equation can be writtéhe form
E(y,u) := Ay + N(y) —yu = 0.
By the Sobolev imbedding theorem 2.2.25 one has:ifer 3 the continuous imbedding
H () C L5(Q).

Moreover, the mappind’ : y € L%(Q) — 3* € L?(Q) is continuously Fechet differen-
tiable with
N'(y)v = 2y*v.

At this point, it is convenient to prove first the followingtersion of Holder’s inequality:
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Lemma5.2.6 Letw C R" be measurable. Then, for all,p € [1,00] with 1/p; + -+ +
1/pr = 1/pand allu; € LPi(Q2), there holdsy, - - - uy, € LP(2) and

[l -kl o < fluall o - sl o

Proof: We use induction. Fok = 1 the assertion is trivial and for = 2 we obtain it
from Holder’s inequality: From /p; + 1/p, = 1/p we see that /¢; + 1/¢q2 = 1 holds for
¢; = p;/p and thus

1 1 1
lurtz]l o = N [Plua PP < lualPEE | ual? || 25

1 1
= [l [P 1357 | o222 (11572 = [faa| o |t ] oo -

As a consequence;u, € LP(Q2) and the assertion is shown for= 2.

Forl,...,k—1— k,letq € [1, 00| be such that

1 1 1

q P P

Thenwe have /p; +---+1/p_1 = 1/q and thus (using the assertion for- 1), we obtain
Uy Up—1 € Lq(Q> and

lur - - wrall o < Ml oy - - Nlural] prees

Therefore, using the assertion for= 2,

lr - wkll o < -l pallwrll o = Tlall oy - ]l o
O

We now return to the proof of the F-differentiabilty 8f. We just have to apply the Lemma
with p; = ps = p3 = 6 andp = 2:

Iy +h)* =y = 3%l 12 = IByh® + 1*|l 2 = Byl e llBllze + 17
= O(l|hlIzs) = oAl o)-

This shows the F-differentiability oW with derivative N'. Furthermore, to prove the conti-
nuity of V/, we estimate

I(N(y + 1) = N'(9))oll 2 = 3 ((y + 1)* = y*)vll 2 = 3lI(y + P 2
= 3lly + All ol |2l o [[0]] o

Hence,

[[h]l L6 =0

IN"(y +h) = N'(W)l 12,6 < 3lly + Rl o[l o 0.
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Therefore,F : Y x U — Y* =: Z is continuously Rechet differentiable with
2
El(y,u)v = Av+3y*v,  El(y, u)w = —u.
Finally, £/ (y,u) € L(Y, Z) has a bounded inverse, since for ang Y the equation
Av+ 32 =f

has a bounded solution operaipr Z — v € Y. Hence, Assumption (OPT) is satisfied.
The optimality conditions are now very similar to the linearadratic problem (5.27) with
the only difference that nowt, (y, u)v = Av + 2y%v: Let (y,u) € Y x U be an optimal
solution. Then by Corollary 5.2.4 the optimality system ia form (5.18)—(5.20) reads

Ay + 52 —yu =0, (5.32)
(7 = ya,0)12 + a(p,v) + (37°p,v)L () =0 Vv eY, (5.33)
a<u<b, (au—7pu—1u)i(Q)>0, Va<u<b (5.34)

Now the adjoint equation (5.33) is just the weak formulatdén
~Ap+35°p = —(§ — ya),  Ploa = 0.

Applying Lemma 5.2.3 we can summarize

Theorem 5.2.7If (i, u) is an optimal solution of5.31)then there exist € H} (), z4, 2 €
L?(£2) such that the following optimality system holds in the weakeen

- Ag = P)/a? Zﬂaﬂ - 07
— Ap+35°p = —(J — ya), DPloa =0,

au —yp+ 2y — 2, =0,
u>a, zZ,>0, ZzZ,(u—a)=0,
u<b z,>0, z(b—u)=0.

5.3 Optimality conditions for problems with general con-
straints

We sketch now the theory of optimality conditions for geherablems of the form

mivr[} f(w) subjectto G(w) e K, w eC. (5.35)
we

Here,f : W — R, G : W — V are continuously Fchet differentiable with Banach spaces
W, V,C C V is non-empty, closed and convex, aid_ V' is a closed convex cone. Here,

K is a cone if
VA>0:ve K= \wek.
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We denote the feasible set by
Woa ={weW : Glw) e L, weC}.
Remark Itis no restriction not to include equality constraintsfdiot
E(w)=0, C(w)eKc
is equivalent to

G(w) == (C(w)) e {0} x Ko = K.

5.3.1 A basic first order optimality condition

Let w be a local solution of (5.35). To develop an extension of Taen5.2.2, we define
the cone of feasible directions as follows.

Definition 5.3.1 Let W,; € W be nonempty. Theangent conef W, at w € Wy is
defined by

T(Weg,w) = {5 eEW A > 0,w, € Wyy - klim wy = W, klim e(wy, — w) = 3}.
—00 —00

Then we have the following optimality condition.

Theorem 5.3.2Let f : W — R be continuously Fechet differentiable. Then for any local
solutionw of (5.35)the following optimality condition holds.

we Wy and (f'(w),s)wsw >0 Vs€T(We;w). (5.36)

Proof: w € W, is obvious. Lets € T'(W,4; w) be arbitrary. Then there exigy) C Woq
andn;, > 0 with wy, — w undn,(w, — w) — s. This yields for all sufficiently largé

0 < mi(f(wr) — f(w)) = (f' (@), m(wi — @) )yw=w +mo(||we — @|ly) — (f' (@), s)w=w

sinceno(||wy, — wl|y;,) — 0, which follows fromn,, (w, — w) — s. O

5.3.2 Constraint qualification and Robinsons’s regularity condition

We want to replace the tangent cone by a cone with a less ccagydi representation.
Linearization of the constraints (assumi@gs continuously differentiable) leads us to the
linearization coneat a pointw € W, defined by

L(Weoy, G, K, C;0) ={nd : n>0,deW, G(w)+G'(w)de K, w+deC}.
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Assume now that the a local solutianof (5.35) satisfies the

Constraint Qualification:
L(W,q,G,C, IC;w) C T(Weg;w) (5.37)

Then the following result is obvious.

Theorem5.3.3Let f : W — R, G : W — V be continuously Fechet differentiable,
with Banach-spaceB/, V. Further letC C V be non-empty, closed and convex, and let
K C V be a closed convex cone. Then at every local solutiarf (5.35) satisfying(5.37)
the following optimality condition holds.

w € Waa and <f/(11_)>,8>w*7w >0 Vse L(Wad,G,C,K;TI)). (538)

Remark If G is affine linear, then (5.37) is satisfied. In fact, de€ L(W,4, G,C, KC; w).
Thens = nd withn > 0 andd € W,

Gw+d)=Gw)+G(wdekK, w+deC.

SinceG(w) € K andw € C, the convexity ofC andC yields wy, := w + $d € W,q.
Choosingy, = 1/k shows that € T'(W,4; w). O

In general, (5.37) can be ensurediiatisfies the

Regularity Condition of Robinson:
0€int(G(w) + G'(w) (C—w) —K). (5.39)

We have the following important and deep result by Robinsory fRo

Theorem 5.3.4 Robinson'’s regularity conditio(b.39)implies the constraint qualification
(5.37)

Proof: See [Ro76, Thm. 1, Cor. 2]3

5.3.3 Karush-Kuhn-Tucker conditions

Using Robinson’s regularity condition, we can write the pyatlity condition (5.38) in a
more explicit form.

Theorem 5.3.5 (Zowe and Kurcyusz [ZK79])
Letf : W — R, G : W — V be continuously Rechet differentiable, with Banach-
spacedV, V. Further letC C V be non-empty, closed and convex, andlletC V' be a
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closed convex cone. Then for any local solutioof (5.35)at which Robinson’s regularity
condition(5.39)is satisfied, the following optimality condition holds:

There exists a Lagrange multipligre V* with

G(w) € K, (5.40)
gek ={qeV": (¢,v)y-y <0 VoveK}, (5.41)
(¢, G(w))v-v =0, (5.42)
wel, (f'(w)+G(w)qgw—w)yww>0 YweC. (5.43)

Using the Lagrangian function

L(w,q) == f(w) + (¢, G(w)) v~y
we can write(5.43)in the compact form
wel, (L,(0,9),w—w)ww=>0 YVweC. (5.43)
Proof: Under Robinson’s regularity condition (5.39), a separaicgument can be used

to derive (5.41)—(5.43), see [ZK79[J

A similar result can be shown if is a closed convex set instead of a closed convex cone,
see [BS98], but then (5.41), (5.42) have a more complicatedtste.

5.3.4 Application to PDE-constrained optimization

In PDE-constrained optimization, we have usually a stateaggn and constraints on con-
trol and/or state. Therefore, we consider as a special baggroblem

min  f(y,u) subjecttoE(y,u) =0, C(y) e Ke, u€ U, (5.44)
(y,u)eY xU

whereE 1 Y x U — Z andC : Y — V are continuously Fchet differentiablelCc C V/
Is a closed convex cone in a Banach spdce Y andU,, C U is a closed convex set. We
set

G:(y>€W::Y><U|—><E(y’U))EZ><V, K={0} xKe, C=Y x Up.
u C(y)

Then (5.44) has the form (5.35) and Robinson’s regularityddtam at a feasible point
w = (y,u) reads

em((,0 )+ (BB E@Y( V(). e
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We rewrite now (5.40)—(5.43) for our problem. The multiplfeas the form; = (p, \) €
Z* x V* and the Lagrangian function is given by

L(y,u,q,A) = f(y,u) + (p, E(y, w) 2=z + (X, C(y))v=v = L(y,u,p) + (A, C(y))v+v
with the Lagrangian
L(y,u,p) = f(y,u) + (p, E(y,u)) 2+ 2
for the equality constraints.

SinceK = {0} x K¢, we have
Ke=V*x K¢
and thus (5.40)—(5.43) read

E(y,u) =0, C(y)€ Ke,
Ae K, (NC@)vey =0,
(L, (5, u,p) +C"(4)' Ny —g)y-y =20 Vyey,
€ U, (L(§,4,p),u—uppy >0 Vu€ Ui

This yields finally
E(ga ﬂ) = Oa C(g) € ICCa (546)
5‘ S ICO y <5\7 C(@»V*,V - 07 (547)
Ly(g,u,p) + C'(§)"A = 0, (5.48)
€ Uy, (Lu(9,0,0),u— @~y >0 Vu€ Ug. (5.49)

Remark Without the state constrairtt(y) € Ko (which can formally be removed by
omitting everything involving” or by making the constraint trivial, e.¢;(y) =y, V =Y,
Ko =Y), we recover exactly the optimality conditions (5.14)2@.of Corollary 5.2.4.0

We show next that the following Slater-type condition ineglRobinson’s regularity condi-
tion (5.45).

Lemma 5.3.6 Letw € Wy, If £ (w) € L(Y, Z) is surjective and if there exist € Usq
andy € Y with

E,(w0)(y — ) + E,(w)(t —u) =0,
Cy) +C"(9)(7 — y) € int(Ke)

then Robinson’s regularity conditid®.45)is satisfied.

Proof: Let
o= C(y) + C'(9)(7 — 1)
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Then there exists > 0 with
U+ By (2¢) C K¢.

Here By (¢) is the opere-ball in V. Furthermore, there exisés> 0 with
C'(§)By(0) C By (e).
Using thatu € U,, andy — y + By (d) C Y we have
() (¢ ") ()~ ()
C(y) C'ty) 0 Upa — U Ke
5 0 N B (w) E,(w) y—y+By(0)\ 0
C(y c'(y) 0 i—a o + By (2¢)
E! (w)) ( 0 ) (E/ (w)By(cS))
= ¢ By (6) + oY :
()20 + (00 B c)
In the last step we have uséd(y)By (6) C By(e) and that, for allb € By (¢), therte
holdsv + By (2¢) D By (¢). By the open mapping theorefy (w) By () is open inZ and

containg). Thererefore, the set on the left hand side is an open neigbbd of0 in Z x V.
O

5.3.5 Applications
Elliptic problem with state constraints

We consider the problem

. 1 «
min fly,u) = 5“@/ - yd||2L2(Q) + 5”“”%2(9)
subjectto — Ay +y=~vu ong, 5 50
%y =0 onof 50
o ’
y>0 onq.

Letn < 3. We know from Theorem 2.3.7 that far ¢ U := L*(Q2) there exists a unique
weak solutiony € H'(Q) N C(Q) of the state equation. We can write the problem in the
form

min f(y,u) subjectto Ay+ Bu=0, y>0.
where Bu = —vu, and A is induced by the bilinear form(y,v) = [, Vy - Vudz +
(yu U)L?(Q)-

With appropriate spacés ¢ H'(Q), Z c H'(Q)* andV D Y we set

E:(i)EYer—)Ay—I—BuEZ, Cly)=y, Ke={veV:v>0}, Uu=U
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and arrive at a problem of the form (5.44). For the naive ahbic= Y = H'(Q2), Z = Y*,
the coneC has no interior point. But sincBu = —yu € L?(Q), we know that all solutions
y of the state equation live in the space

Y ={ye H(Q)NCQ) : Ay e U* = L*(Q)}
andY’ is a Banach space with the notfy|| ;. ) + 1yl o) + (1Al 12 (o) (Why?).

Here,Ay € L?(Q) has to be understood in the sense thate (H*(£2))* can be represented
in the formAy = (f,-)(L*(Q2)) with somef € L*(Q).

ThenA : Y — L*(Q) =: Z is bounded and by Theorem 2.3.7 also surjective. Finally, we

choosel” = C'(Q2), thenV D Y andKs C V has an interior point.
Now assume that there exigtss Y, 7 > 0 anda € U with (note thatt;, = A, E}, = B)
Alg—9)+ B(a—1u)=0.

For example in the case= 1 the choicey = y+1, © = u+1 works. Then by Lemma 5.3.6
Robinson’s regularity assumption is satisfied. Therefare, solution(y, u) the necessary
conditions (5.46)—(5.49) are satisfied: Using that

L(y,u,p) = %Ily — Yall 2 + %HUH%) + (p, Ay + Bu) 12
we obtain

Aj+Bi—=0, §>0,

AeKE,  (MNDe@ro@ =0,

(7 = Ya, V) r2() + (B, Av) 120y + (N V)@ c@ =0 Vo €Y,

(at —yp,u — )2 >0 Vuel.

One can show that the S€¢. € C'(Q)* of nonpositive functionals ofi(Q2) can be identified
with nonpositive regular Borel measures, i.e.

NeEKE =

M V)o@ c@ = — / v(x) dpg(x) —/ v(x) dpso(z) with nonneg. measures,, 1.
Q o0

Therefore, the optimality system is formally a weak forntialia of the following system.

— Ay +1y =yu on§, %:0 onos2,
1%

gy >0, g, (oo honnegative regular Borel measures

/Q §(z) dpg(z) + / 5(z) dpoa(x) = 0,

o0

0
—Ap+p=—(U—ya) + fio ONK, a—izﬁaa onofY,

ot +yp = 0.
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Chapter 6

Generalized Newton methods

The aim of this chapter is to lay the ground for fast locallyneergent methods that are
applicable to the (constrained) optimization of complesteyns. Newton’s method or vari-
ants of it are at the heart of the most efficient methods ofineal optimization. Newton’s
method is applicable to systems of equations

G(z) = 0. (6.1)

HereG : X — Y must be sufficiently smooth. The classical Newton’s mettezpiresG
to be continuously F-differentiable, but as we will see, senoothness of is sufficient.

To get the link from optimization problems to the equatiorijéwe note the following:

e If wis a local solution of
min f(w)

andf : W — R is continuously differentiable, then it satisfies the oty condition
f'(w) = 0.
This results in (6.1) witlG : W — W*, G(w) = f'(w).
e Let(y,u) be alocal solution of
min f(y,u) St E(y,u)=0

with f : Y xU — RandF : Y x U — Z continuously F-differentiable. Assume
that £, (7, u) is boundedly invertible. Then there exists by Corollary $2.Lagrange
multiplier (adjoint statep € Z* such that the following optimality condition holds:

fo(y, ) + E(y,u)"p = 0,
fu@,a) + E(

79



80

Defining

G:YXxUXxZ"—=>Y"xU"x Z,

o= () (g )

we arrive at an operator equation of the form (6.1).

e Let(y,u) be alocal solution of
min f(y,u) St E(y,u) =0, u € Uy

with a Hilbert space/, ) # U,; C U closed, convex ang : Y x U — R and
E Y x U — Z continuously F-differentiable, . Assume th&}(y, u) is boundedly
invertible. Then there exists by Corollary 5.2.4 a Lagrangstiplier (adjomt state)
p € Z* such that the following optimality condition holds:

f(g.u) + E,(y,0)"p
u— P(u— B(f,(9,1) + E,(7,7)"p))
E(y,u)

I
o o o

were P is the projection ontd/,; and > 0 is arbitrary. Note, however, that the pro-
jection is Lipschitz-continuous, but non-differentiable

6.1 A general superlinear convergence result

Consider the operator equation (6.1) with X — Y, X, Y Banach spaces.

A general Newton-type method for (6.1) has the form

Algorithm 6.1.1 (Generalized Newton’s method)

0. Chooser® ¢ X (sufficiently close to the solutiost).
Fork=0,1,2,...:

1. Choose an invertible operatdr;, € £(X,Y).

2. Obtains* by solving
Mys = —G(2"), (6.2)

and setrFt1 = 2k + gk,

We now investigate the generated sequepce in a neighborhood of a solutian® € X,
e, G(z*) =
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For the distancé® := z* — z* to the solution we have

MypdF ™ = My (2" —2*) = My(a%+ 5" —2%) = Myd* — G (") = G(2*)+ Mpd® — G (2F).
Hence, we obtain:

1. (z*) converges g-linearly to* with ratey € (0, 1) iff

M (G2 + d¥) — G(z*) — Myd")|| <7lld¥||x V¥ K with [|d*|  sufficiently smalll.
(6.3)
2. (2*) converges g-superlinearly tg iff

MG (2" + d¥) = Ga™) = Myd®)|| = o([|d*|| ) for [|d*]| x — 0. (6.4)

3. (z*) convergences with g-ordér+ o > 1 iff
— * * 14+«
MG +d¥) = Gla®) = Mid") | = O(Id¥) for||d*||y —0.  (6.5)

In 1., the esimate is meant uniformly ini.e., there exists, > 0 such that

1M (G (" +d") = Ga) — Myd)l| ¢ < ylld*lly ¥ & with [|d[| <o,
In 2.,0(||d*|| ;) is meant uniformly irk, i.e., for allp € (0, 1), there exists, > 0 such that

1M G (" + d) = Ga) = Mpd®) || < nlldl ¥ K with [|d[| ¢ < 6.
The condition in 3. and those stated below are meant similarl
It is convenient, and often done, to split the smallnessmapsion on

1M (G (2" + d¥) = Ga) — Myd®)||

in two parts:
1. Regularity condition:
My <C VE>0. (6.6)
2. Approximation condition :
IG (2" + d*) = G(a") = Myd*||x = o([|d"|| ) Tfor ||d"]x — 0. (6.7)
or .
IG (2" + d*) = G(a") = Myd*|| x = O(||d"|| ") for [|d*]|x — 0. (6.8)
We obtain

Theorem 6.1.2 Consider the operator equatigie.1) with G : X — Y, whereX andY
are Banach spaces. Lét*) be generated by the generalized Newton method GAlgJ).
Then:
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1. If 2% is sufficiently close ta* and(6.3) holds them* — z* g-linearly with rate-y.

2. If 20 is sufficiently close ta* and (6.4) (or (6.6) and (6.7)) holds thenz* — z* g-
superlinearly.

3. If 20 is sufficiently close ta* and (6.5) holds (or (6.6) and (6.8)) thenz* — z* g-
superlinearly with orden + a.

Proof: 1.Letd > 0 be so small that (6.3) holds for alf with ||d*|, < 4. Then, forz®
satisfying||z® — 2*|| , < d, we have
lo' = 2%l x = [ld" | x = |Mg (G (a" + d°) = G(z") = Mod®)|| x < V]|’
= lla® — 2|l < 6.

Inductively, let||z* — z*||, < 6. Then

e = |l = [l = MG + dF) = Gla7) = Mid¥)]|
< 7||dk||X = 7||$k - 95*||X < 0.
Hence, we have
[a" — ¥ ¢ < ylla* —2*|x VE>0.

2. Fixy € (0,1) and let§ > 0 be so small that (6.3) holds for alf with ||d*||,, < 4. Then,
for 20 satisfying||z° — z*||; < 4, we can apply 1. to concludé — z* with rate-.

Now, (6.4) immediately yields

12" = 2™ = [ld" [ = 1M (G (" + d¥) = Ga") — Mid®) | = o]|d"] )
=o([la" —2"[[x) (k— o0).

3. Asin 2, but now

. a . N 14+«
24 = oy = I = MG+ d¥) — Gla®) — M)l = O(IHE™)
w1 1o
= O(||z* — 2 lx ) (k— o0).
O

We emphasize that an inexact solution of the Newton syste®) (&n be interpreted as
a solution of the same system, but willf, replaced by a perturbed operathf;,. Since

the condition (6.4) (or the conditions (6.6) and (6.7)) remaalid if M, is replaced by a
perturbed operatal/, and the perturbation is sufficiently small, we see that teedanver-

gence of the generalized Newton’s method is not affectduakifsystem is solved inexactly
and the accuracy of the solution is controlled suitably. De@nis-MoE condition [DS83]
characterizes perturbations that are possible withoutagsg g-superlinear convergence.

We will now specialize on particular instances of geneealiNewton methods. The first
one, of course, is Newton’s method itself.
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6.2 The classical Newton’'s method

In the classical Newton’s method, we assume thas continuously F-differentiable and
chooseM;, = G'(x*).

The regularity condition then reads
IG" (@) M lyx <C VE=0.

By Banach’s Lemma (asserting continuity/af — A/ ~1), this holds true i7" is continuous
atz* and
G'(z*) € L(X,Y) is continuously invertible.

This condition is the textbook regularity requirement ie nalysis of Newton’s method.
Frechet differentiability at* means
IG (2" + d) = G(a") — G'(27)d"|| x = o(l|d"[|x)-
Now, due to the continuity of:’,
IG (2" + d*) = G(a") = Mpd*||x = [|G(a" +d") = G(z") = G'(a" + d")d"|

< ||G(a™ +d") = G(a*) = G'(a")d"|| x + [|(G'(2") = G'(a" + d"))d"

= o[|d"]| ) + [|G"(2") = G'(a" + d*) || x y 12" ]| 5 = o(lld"||x)-
Therefore, we have proved the superlinear approximatioditon.

If G’ is a-order Hblder continuous neat*, we even obtain the approximation condition of
orderl + «. In fact, letL > 0 be the modulus of Blder continuity. Then

IG(@" +d") — G(z") = Myd"ly = |G(z" + d") = G(2") = G'(2" + d*)d"||y,

1
s/naw+m%4ﬂﬁ+wmymwm
0

1
/ (G (" + td") — G (" + d¥))d* dt
0

Y

1
SLA<L%waXﬁMWX

L I+a I+
= I = 011

Summarizing, we have proved the following

Corollary 6.2.1 LetG : X — Y be a continuously F-differentiable operator between Ba-
nach spaces and assume tliéfz*) is continuously invertible at the solutiari. Then New-
ton’s method (i.e., Alg.1.1with M, = G'(2*) for all k) converges locally g-superlinearly.
If, in addition, G’ is a-order Holder continuous neat*, the order of convergence Is+ a.
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Remark 6.2.2 The choice ofl/;, in the ordinary Newton’s method/,, = G’(z*), is point-
basedsince it depends on the point.

6.3 Semismooth Newton methods

If G is nonsmooth, the question arises if a suitable substitut@’fcan be found. We follow

[UIO1, UIO3] here; a related approach can be found in [HIKO3jinking at subgradients
of convex functions, which are set-valued, we considerakied generalized differentials
0G : X = L(X,Y). Then we will choosé//, point-based, i.e.,

If we want every such choic&/,. to satisfy the superlinear approximation condition, then
we have to require

sup  [|G(2" +d) — G(z") — Md||x = o(||d||) for[[d][x — 0.
MedG (x*+d)

This approximation property is called semismoothnessJIIO03]:
Definition 6.3.1 (Semismoothnesshet G : X — Y be a continuous operator between

Banach spaces. Furthermore, let be given the set-valuepimgpG : X = L(X,Y)
with nonempty images (which we will call generalized diffeednti the sequel). Then

a) G is calledoG-semismooth at € X if

sup |Gz +d) — G(z) — Md|[x = o(|[d|| ) for [[d]|y — 0.
MedG (z+d)

b) G is calledoG-semismooth of order > 0 atz € X if

sup  [|G(z + d) — G(x) = Md| x = O(||d[|I™") for ||d||x — 0.
MedG (x+d)

Lemma6.3.2If G : X — Y is continuously F-differentiable near, thenG is {G'}-
semismooth at. Furthermore, ifG’ is a-order Holder continuous neat, thenG is {G'}-
semismooth at of ordera.

Proof:
|G(z +d) = G(z) = G'(z +d)d|| <
<Gz +d) — G(z) — G'(2)d||y + [|G'(x)d — G'(z + d)d||y
<o([ldllx) + [|G'(x) = G'(z + D) x y ldllx = o([ld] x)-
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Here, we have used the definition of F-differentiablity amel tontinuity ofG".

In the case of-order Hilder continuity we have to work a little bit more:

|G(x +d) — G(z) — G'(z + d)d||y = ‘ /Ol(G’(x +td) — G'(z + d))d dt

Y

1 1
S/O !\G’($+td)—G'(x+d)\|x,ydtHdeS/O L(1 = t)*(|dll dt || x

L 1+« 1+«
= —-—— d pu— d .
Sl = O]

O

Example For locally Lipschitz-continuous functiors : R® — R™, the standard choice
for 0G is Clarke’s generalized Jacobian:

9"G(z) = conv{M : 2* — z, G'(z*) — M, G differentiable at:" } . (6.9)

This definition is justified sincé&” exists almost everywhere @i by Rademacher’s theo-
rem (which is a deep result).

Remark The classical definition of semismoothness for functiGhsR™ — R™ [Mi77,
QS93] is equivalent td“ G-semismoothness, whet¥ G is Clarke’s generalized Jacobian
defined in (6.9), in connection with directional differeatdility of G.

Next, we give a concrete example of a semismooth function:

Example Consider) : R — R, ¢)(x) = P4 (), then Clarke’s generalized derivative is

0 r<aorx>b,
o%Mp(x) =4 1 a<x<b,
con0,1} =1[0,1] z=ao0rz=>0.

The 9<7)-semismoothness af can be shown easily:

Forallz ¢ {a,b} we have that) is continuously differentiable in a neighborhoodwofvith
0% = {¢'}. Hence, by Lemma 6.3.2; is 9“v)-semismooth at.

Forz = a, we estimate explicitly: For small > 0, we haved“y)(z) = {¢/(a + d)} = {1}
and thus

sup (@ +d)— (@) —Md =a+d—a—1-d=0.
Medely(z+d)

For smalld < 0, we haved®«)(z) = {¢'(a + d)} = {0} and thus

sup  |Y(x+d)—Y(x) — Mdl=a—a—0-d=0.
Medeh(a+d)

Hence, the semismoothnessjofitx = a is proved.



86

Forx = b we can do exactly the same.

The class of semismooth operators is closed with respecivideaclass of operations, see
[UIO1]:

Theorem 6.3.3Let X, Y, Z, X;, Y; be Banach spaces.

a) If the operators5; : X — Y; are 0G;-semismooth at then (G, Gs) is (0G1, 0G5)-
semismooth at.

b) IfG; : X — Y,i = 1,2, are 9G,;-semismooth at thenG; + G, is (0G; + 0G3)-
semismooth at.

c) LetG; : Y — ZandG, : X — Y bedG;-semismooth afi»(x) and z, respectively.
Assume thadG, is bounded neay = G(z) and thatGs is Lipschitz continuous near
z. ThenG = G4 o Gy is 0G-semismooth with

0G(x) = {M\ My : M, € G, (Ga()), My € 9Ga(z)} .

Proof: Parts a) and b) are straightforward to prove.
Part c):
Lety = G5(z) and consided € X. Leth(d) = Go(z + d) —y. Then

[(d)]ly = [|Ga(x + d) = Ga(2)[ly < Laf|d]]y.
Hence, forM; € 0G,(G2(x + d)) and M, € 0Go(x + d), we obtain

1G1(G2(x + d)) — Gi(Ga(x)) — M1 Mad||, =
= ||G1(y + h(d)) — G1(y) — Mih(d) + My (Ga(z + d) — Ga(x) — Mad)|| ,
< |[|Gi(y + h(d)) — Gi(y) — Mih(d)|ly + [[Milly £ |Go(z + d) — Ga(z) — Mad|]y,

By assumption, there exists with || M][,., < C. Taking the supremum with respect to
My, M, and using the semismoothness gives
sup ||G(x +d) — G(zx) — Md||,
MedG(z+d)

< sup |G1(y + h(d)) — Gi(y) — Mih(d)|ly
M €0G1 (y+h(d))

+C  sup  |[Ga(z +d) — Ga(x) — Mad||y
MoedGa(xz+d)

= o([a(d)lly) + o(lldll x) = olldll x)-
O

The semismoothness concept ensures the approximatioarprepquired for generalized
Newton methods. In addition, we need a regularity condjtwimich can be formulated as

follows:



S. Ulbrich: Optimization with Partial Differential Equats 87

There exist constants > 0 andd > 0 such that
||M‘1||Y7X <C VMedG(x) Vee X, ||lz—a"|, <9 (6.10)

Under these two assumptions, the following generalized tbiewinethod for semismooth
operator equations is g-superlinearly convergent:

Algorithm 6.3.4 (Semismooth Newton’s method)

0. Chooser® € X (sufficiently close to the solutiart.)
Fork=0,1,2,...:

1. ChooseVl; € 9G(z*).

2. Obtains” by solving
Mys = —G(2"),

and setr"*! = % 4 s*,
The local convergence result is a simple corollary of Theoéel.2:

Theorem 6.3.5Let G : X — Y be continuous andG-semismooth at a solution* of
(6.1). Furthermore, assume that the regularity conditi10) holds. Then there exists
d > 0 such that for allz® € X, ||2° — 2*||, < 4, the semismooth Newton method (Alg.
6.3.4 converges g-superlinearly to'.

If G is 0G-semismooth of order > 0 at z*, then the convergence is of ordex- «.

Proof:

The regularity condition (6.10) implies (6.6) as longadsis close enough te*. Further-
more, the semismoothness Gf at +* ensures the g-superlinear approximation property
(6.7).

In the case ofv-order semismoothness, the approximation property willerdr+ « holds.

Therefore, Theorem 6.1.2 yields the assertions.

6.4 Semismooth Newton methods in function spaces

In section 6.3 we introduced the concept of semismoothreessoinsmooth operators and
developed superlinearly convergent generalized Newtahads for semismooth operator
equations. We will now show that optimality conditions camrewritten as semismooth
equations.
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Let 2 C R™ be measurable with < |2] < co. We consider the problem

(y,U)er?/lan(Q) Fy,u) (y,u) a<u<

The optimality conditions are

were P, ;) is the projection ontd/,; and3 > 0 is arbitrary. or alternatively, the reduced
problem

A

min  f(u) a<u<b a.e.orn)
ueL?(Q)
with f : L2(Q) — R twice continuously F-differentiable. We can admit unitatecon-
straints ¢ < u or u < b) just as well. To avoid distinguishing cases, we will focustbe
bilateral case:, b € L>(2),b—a > v > 0 on 2. We also could consider problems iifi,
p # 2. However, for the sake of compact presentation, we focutiercase = 2, which
Is the most important situation.

It is convenient to transform the bounds to constant bounds, via

u—a

U )
b—a

Hence, we will consider without restriction the problem

in f I<u<r ae.on 6.11
Jin flu) IT<u<r (6.11)

with constantd < r. LetU = L?(Q) andS = {u € L*(Q) : [ <wu < r}. We choose the
standard dual pairing, )+ v = (-, -)z2 and then havé/* = U = L*(Q2). The optimality
conditions are

ues, (Vf(u),v—u)p:>0 Vved.

We now use the projectiofls ontoS, which is given by
P()(x) = Pu(v(x)), = €.
Then the optimality conditions can be written as
®(u) :=u— Plu— BV f(u)) =0, (6.12)

where > 0 is arbitrary, but fixed. Note that, sinde conincides with the pointwise pro-
jection onto[l, ], we have

®(u)(x) = ulz) = Puy(u(z) = BV f(u)(2)).
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Our aim now is to define a generalized differentidl for ® in such a way tha® is semis-
mooth.

By the chain rule and sum rule that we developed, this redodég tquestion how a suitable
differential for the superpositiof; ,;(v(-)) can be defined.

In fact, the following can be proved:

Theorem 6.4.1Let() C R" be bounded and € (2, c0). Then the operator
U LY(Q) — LX(Q), P(u)(x) = Pyy(u(z)),
is 0¥-semismooth with

OV(u)={g-1: glz)=1ifu(z) € (l,r), g(r) =0if u(x) & [I,7],g9(x) € [0,1] if u(z) € {l,r}}.

Proof: Letu,s € L%(Q2) be arbitrary. LeyI € 0¥ (u + s) be arbitrary.

If u(z) ¢ {l,r} and|s(z)| < dist(u(z), {{,7}), thent — V¥ (u + ts)(z), t € [0, 1] is linear
and thus we have
U(u+ s)(x) — VU(u)(z) — g(x)s(x) = 0.

If u(z) =lands(z) <r—loru(z)=rands(z) > [ — rthen again
U(u+ s)(z) — ¥(u)(z) — g(x)s(z) = 0.
In all other cases we have
(W (u+ s)(2) = W(u)(x) — g(x)s(x)] < 2|s(z)].
Hence, we have for all/ € 0¥ (u + s) and alle > 0

||\I]<u + S) - \I/(u) B ]\4S||L2 < ||23 1{:c |s(:c)\<max(rfl,dist(u(x),{l,r})}||L2

<125l o ll Lge: () <max(r—tdistuta), (1))} | p2a/0-2) -

Now ||s||;, — 0 impliess — 0 almost everywhere. Therefore

11 e (s() | <max(r—tdistu(e) (LD} | 20/ 020 — O

as|s||;, = 0. O

We now return to the operatdr defined in (6.12). To be able to prove the semismoothness
of & : L? — L? definied in (6.12), we need some kind of smoothing propertyhef
mapping

ws u— BV f(u).



90

Therefore, we assume thatf has the following structure:

There exists > 0 andg > 2 such that
V) = au+ B(u), (6.13)
B : L*(Q) — L) continuously F-differentiable.

This assumption implies tha& is locally Lipschitz continuous. In fact,
1
I1B() = B < [ 150 +tu =)= o), d

1
sé\@%w%@—vmmﬁwwu—wm.

Remark This structure is met by many optimal control problems, seg., the optimal
heating problem in the second part of section 4.3. There,btaired

Vf(u) = au—p(u),

with a > 0,y € L>(Q) andL*(Q) > u — p(u) € H'(Q2) continuous affine linear. Thus,
using the Sobolev embedding theorems, we obtain that faoappateq > 2, the operator

B :u— —vyp(u)

defines a continuous affine linear mapping fréito L? as required.

If we now chooses = 1/«, then we have

O(u) =u— Pyy(u— (1/a)(au+ B(u))) = u — Py(—(1/a)B(u)).

Example: Distributed control of elliptic equations

We consider for example

. 1 o
min fy,u) = §||?J - yd||i2(9) + §||U||i2(9)
subjectto — Ay =~u on{, (5.27)
y=0 onos,

a<u<b onf,

where
vye L®(Q)\ {0}, 7>0,a,bec L*(Q), a<b.

We choose as above
U=L*Q), Y=H}(Q), Z=Y*
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As a Hilbert spaceY is reflexive andZ* = Y** can be identified with".

Let (y,u) € Y x U be an optimal solution. Then by Corollary 5.2.4 and (5.22R3%pthe
optimality system in the form (5.18)—(5.20) reads

a(y,v) — (Y8, v) 20 =0 Vovey,
(J — Ya, V)20 +a(p,v) =0 YoveYy,
a<u<b (at—yp,u—uwi(Q) >0, YueclU a<u<b.

Moreover, we have A
Vf(u) = au—yp(u),
wherep = p(u) € Y solves the adjoint equation
(y(u) = ya,v) 20 + alp,v) =0 Vv eY.
O

We obtain:

Theorem 6.4.2 Consider the problen6.11) with I < r and letf : L(Q) — L*(Q)
satisfy condition(6.13) Then, for3 = 1/«, the operator® in the reformulated optimality
conditions(6.12)is 9®-semismooth with
0P : L*(Q2) = LIL(), LX),
OB(u) = {M; M =T+ g - B'(u), g € L¥(),
g(z) € 0 Py,y(—1/aB(u)(z)) fora.a.a € Q}.

Here,
0 t<lort>r,

0Py () Q1 l<t<m,
[0,1] t=lort=r.

Proof: By the chain rule, the smoothness Bf: L? — L? and the semismoothness of
U LY — L2, U(u)(z) = Pyy(u(z)), we see thafd is semismooth with respect to the
stated generalized differentiall

For the applicability of the semismooth Newton method (A@.4) we need, in addition,
the following regularity condition:

HM‘1\|L27L2 <C VMedb(u) Vue L*(Q), |u—u,. <.

Sufficient conditions for this regularity assumption in ftevor of second order sufficient
optimality conditions can be found in [UI01, Ul01a].
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Chapter 7

Globalization for problems with simple
constraints

We develop now globalized descent methods for simply camsd problems of the form
min f(w) st weSs (7.2)

with W a Hilbert spacef : W — R continuously F-differentiable, anfl W closed
and convex. Optimality conditions for this type of probleh@/e already been considered
in5.1.

Example 7.0.3 A scenario frequently found in practice is
W=L*Q), S={ueLl*Q) : a(z) <u(z)<b(z)ae on}

with L*°-functionsa, b. It is then very easy to compute the projectidnhonto.S, which will
be needed in the following:

Ps(w)(x) = Paa)p@)(w(r)) = max(a(z), min(w(z), b(x))).

In the case of control constraints, the globalization tegpnes of this chapter can be com-
bined with the semismooth Newton method of the last chaptebtain a globally conver-
gent method that converges locally superlinearly.

The presence of the constraint setequires to take care that we stay feasible with respect
to S, or — if we think of an infeasible method — that we convergedasibility. In the
following, we consider a feasible algorithm, i.e” < S for all .

If w* is feasible and we try to apply the unconstrained descertiadetve have the dif-
ficulty that already very small step sizes> 0 can result in pointsv* + os* that are
infeasible. The backtracking idea of considering only ¢wws> 0 for which w* + os* is
feasible is not viable, since very small step sizes or eyea 0 might be the result.

93
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Therefore, instead of performing a line search along the{tefy+ os* : o > 0}, we per-
form a line search along the projected path

{Ps(wk + Jsk) o> O} ,

where Ps is the projection ont. Of course, we have to ensure that along this path we
achieve sufficient descent as longwsis not a stationary point. Unfortunately, not any
descent direction is suitable here.

Example 7.0.4 Consider
S={weR®: w; >0, wy +wy >3}, [f(w)=>5w]+ws.

Then, atw® = (1,2)7, we haveV f(w*) = (10,4)”. Sincef is convex quadratic with
minimumw = 0, the Newton step is

dF = —wh =—(1,2)".
This is a descent direction, since
Vf(wM'd" = —18.

But, foro > 0, there holds

P ) = Pl ~o)1.2) = - () +o(372) = (1)

From

+g<_11)_

Vf(w'“)T< 11) 6

we see that we are getting ascent, not descent, along the djeath, althoughl* is a
descent direction.

7.1 Projected gradient method

The example shows that care must be taken in choosing ajgepearch directions for
projected methods. Since the projected descent propefti@search direction are more
complicated to judge than in the unconstrained case, ittisfailne scope of this chapter to
give a general presentation of this topic. In the finite digienal setting, we refer to [Ke99]
for a detailed discussion. Here, we only consider the ptegegradient method.

Algorithm 7.1.1 (Projected gradient method)

0. Choosa® € S.
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Fork=0,1,2,3,....

1. Sets® = —V f(w").

2. Chooser;, by a projected step size rule such thfdtPs (w* + o4.5%)) < f(w").
3. Setw* ! := Pg(wk + oys*).

For abbreviation, let
wh = wk — oV f(wh).

We will prove global convergence of this method. To do this,imeed to collect some facts
about the projection operatéis.

The following result shows that along the projected steiedescent path we achieve a
certain amount of descent:

Lemma 7.1.2 LetWW be a Hilbert space and lgt : W — R be continuously F-differentiable
on a neighborhood of the closed convex$etetw* € S and assume tha¥ f is a-order
Holder-continuous with modulus > 0 on

{1 =" +tPs(wh) : 0<t <1},

for somex € (0, 1]. Then there holds
k k 1 k k2 k- 1+«
F(Ps(wg)) = f(w*) < —|[Ps(wg) = w*[ly, + L] Ps(wg) — w'lly

Proof:

F(Ps(wy)) = f(w*) = (Vf(vg), Ps(wy) — w*)w
= (Vf(w"), Ps(wg) — w")w + (Vf(vg) = VF(w"), Ps(wg) — w")w

with appropriatey® € {(1 — t)w" + tPs(wk) : 0 <t <1},

Now, sincew® — w* = os* = —oV f(w*) andw® = Ps(w*), we obtain

—o(V f(w"), Ps(wg) — w")w

wy — w*, Ps(wy) —w*)w
wh — Ps(u

= :

= (wy — Ps(w"), Ps(wg) — Ps(w"))w
= (Ps(wy) — Ps(w"), Ps(wg) — Ps(w"))w
+ (wy — Ps(wy), Ps(wy) — Ps(w®))w

>0 byLe?n’maS.l.Z, b)
> (Ps(w) — Ps(w*), Ps(w}) — Ps(w"))w
2
= || Ps(wl) — w"ly,.
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Next, we use
[0f — w* ||y < [|Ps(wh) — w"y,.

Hence,

(VF(e5) = VI (), Ps(wy) = w'hw < [V F(05) = VF ()l |[Ps(wg) = wlly
< Ly = w* Iy I Ps(wg) = w'lly

14+«
< L|| Ps(wk) — w* ||,

O

We now consider the following

Projected Armijo rule:
Choose the maximumy, € {1,1/2,1/4, ...} for which
F(Ps(wt + 0ust)) = fuh) < =T Ps(wt + ous") = w [y
Herey € (0,1) is a constant.
In the unconstrained case, we recover the ordinary Armig ru
f(Ps(w" +oys™)) = f(w*) = f(w* + ops*) — f(w"),

= IPs(ut 4 oxs®) — iy = = floust iy = =10l iy = 10u(V £ (), 8w

As a stationarity measube(w) = ||p(w)||,; we use the norm of therojected gradient
p(w) = w — Pg(w — Vf(w)).
In fact, the first-order optimality conditions for (7.1) are
welsS, (Vf(w),v—w)y >0 Yovelbs.
By Lemma 5.1.2, this is equivalent to
w — Ps(w —V f(w)) = 0.

As a next result we show that projected Armijo step sizegexis

Lemma 7.1.3 LetV be a Hilbert space and let: W — R be continuously F-differentiable
on a neighborhood of the closed convex.Sefhen, for allw® € S with p(w*) # 0, the
projected Armijo rule terminates successfully.
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Proof: We proceed as in the proof of Lemma 7.1.2 and obtain (we hatv@ssumed Blder
continuity of V f here)

—1 2
f(Ps(wh)) — f(w") < FIIPs(wi) — w"|lyy + o([| Ps(wh) — w[ly,).
It remains to show that, for all small > 0,
v—1 2
TIIPs(wﬁi) — w”|lyy + o([| Ps(w}) — wly,,) <0
But this follows easily from (Lemma 5.1.2 e)):

v—1 2
——I1Ps(wg) = w'lly < (v = Dllp()lly, | Ps(wg) = w'lly-

<0

O

Theorem 7.1.4Let W be a Hilbert spacef : W — R be continuously F-differentiable,
andS C W be nonempty, closed, and convex. Consider Algorittiriwith the projected
Armijo rule and assume that(w") is bounded below. Furthermore, I8 f be a-order
Holder continuous on

Ng={w+s: f(w) < f@), [Is]y < p}

for somen > 0 and some > 0. Then
. k .
Jim {lp(w®)[ly, = 0.
Proof: Setp* = p(w*) and assume* 4 0. Then there exist > 0 and an infinite sefs

with [|p*|l,,, > eforall k € K.

By construction we have that(w*) is monotonically decreasing and by assumption the
sequence is bounded below. For/akk K, we obtain

2 2
Flk) = ) > Py + oust) = whlly 2 aullpt iy > vone’,
where we have used the Armijo condition and Lemma 5.1.2 a¥ Stows(o,)x — 0 and
(|| Ps(w* + ops*) — w*||,y )k — 0.

For largek € K we haves,, < 1/2 and therefore, the Armijo condition did not hold for the
step sizer = 20%.. Hence,

2
= ol Ps(wt + 2005) — wh iy < F(Ps(u® + 2005) — f ()

1 2 1+«
< =g I Ps(w + 20u%) = wlly, + Ll Po(w* + 20 — w iy,
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Here, we have applied Lemma 7.1.2 and the fact that by Lemina &)
| Ps(w" 4 204,5%) — wkHW < 2| Ps(w® 4 op,s*) — wkHW — 0.

Hence,

1-— 2 1+a
- 1)\ Ps(w + 203,5F) — w3y < L||Ps(w + 2035F) — w1,
k

From this we derive

1+«
(1 = D"y || Ps(w” + 2045") — w¥||y;, < L|| Ps(w” + 2045") — ||,

Hence,

a K>k—oo

(1—79)e< LHPS(wk + 20ksk) — wkH;/ < LZO‘HPS(wk + O’kSk) — wkHW —0.

This is a contradictiond

A careful choice of search directions will allow to extené ttonvergence theory to more
general classes of projected descent algorithms. Foniostan finite dimensions, g-superlinearly
convergent projected Newton methods and their globatinatire investigated in [Ke99,
Be99]. In anL? setting, the superlinear convergence of projected Newtethods was
investigated by Kelley and Sachs in [KS94].
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