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Preface

These notes contain in part material from the lecture notes by M. Hinze, R. Pinnau, M. Ul-
brich, S. Ulbrich for the autumn schoolModelling and optimization with partial differential
equations(Hamburg, September 26–30, 2005).

In the current version of these lecture notes, only the contributions of M. Ulbrich and S.
Ulbrich have been used.



Chapter 1

Introduction and examples

1.1 Introduction

The modelling and numerical simulation of complex systems plays an important role in
physics, engineering, mechanics, chemistry, medicine, finance, and in other disciplines.
Very often, mathematical models of complex systems result in partial differential equations
(PDEs). For example heat flow, diffusion, wave propagation,fluid flow, elastic deforma-
tion, option prices and many other phenomena can be modelledby using PDEs. Many of
the techniques that we will develop can also be applied to optimization problems with other
constraints than PDEs, e.g., ordinary differential equations (ODEs) or partial differntial-
algebraic equations (PDAEs).

In most applications, the ultimate goal is not only the mathematical modelling and numer-
ical simulation of the complex system, but rather the optimization or optimal control of
the considered process. Typical examples are the optimal control of a thermal treatment
in cancer therapy and the optimal shape design of an aircraft. The resulting optimization
problems are very complex and a thorough mathematical analysis is necessary to design
efficient solution methods.

There exist many different types of partial differential equations. We will focus on linear
and semilinear elliptic and parabolic PDEs. For these PDEs the existence and regularity of
solutions is well understood and we will be able to develop a fairly complete theory.

Abstractly speaking, we will consider problems of the following form

min
w∈W

f(w) subject to E(w) = 0, C(w) ∈ K, (1.1)

wheref : W → R is the objective function,E : W → Z andC : W → V are operators
between Banach spaces, andK ⊂ V is a closed convex cone.

In most cases, the spacesW , Z andV are (generalized) function spaces and the operator
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equationE(w) = 0 represents a PDE or a system of coupled PDEs. The constraint

C(w) ∈ K

is considered as an abstract inequality constraint. Sometimes (e.g., in the case of bound
constraints), it will be convenient to replace the inequality constraint by a constraint of the
formw ∈ S, whereS ⊂ W is a closed convex set:

min
w∈W

f(w) s.t. E(w) = 0, w ∈ S. (1.2)

Here “s.t.” abbreviates “subject to”.

To get the connection to finite dimensional optimization, consider the case

W = R
n, Z = R

p, V = R
m, K = (−∞, 0]m.

Then the problem (1.1) becomes a nonlinear optimization problem

min
w∈W

f(w) s.t. E(w) = 0, C(w) ≤ 0. (1.3)

Very often, we will have additional structure: The optimization variablew admits a natural
splitting into two parts, a statey ∈ Y and a control (or design)u ∈ U , whereY andU are
Banach spaces. ThenW = Y × U , w = (y, u), and the problem reads

min
y∈Y,u∈U

f(y, u) s.t. E(y, u) = 0, C(y, u) ∈ K. (1.4)

Here,y ∈ Y describes the state (e.g., the velocity field of a fluid) of theconsidered system,
which is described by the equationE(y, u) = 0 (in our context usually a PDE). The control
(or design, depending on the application)u ∈ U is a parameter that shall be adapted in an
optimal way.

The splitting of the optimization variablew = (y, u) into a state and a control is typical
in the optimization of complex systems. Problems with this structure are calledoptimal
control problems. In most cases we will consider, the state equationE(y, u) = 0 admits,
for everyu ∈ U , a unique corresponding solutiony(u), because the state equation is a well
posed PDE fory in whichu appears as a parameter. Several examples will follow below.

We use the finite-dimensional problem (1.3) to give a teaser about important questions we
will be concerned with.

1. Existence of solutions.

Denote byf ∗ the optimal objective function value. First, we show, usingthe properties of
the problem at hand, thatf is bounded below on the feasible setWad of (1.3) and that (1.3)
has a feasible point. Then

−∞ < f ∗ = inf
w∈Wad

f(w).
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We consider a minimizing sequence(wk) ⊂ Wad, i.e.,E(wk) = 0, C(wk) ≤ 0, f(wk) →
f ∗. Next, we prove that(wk) is bounded (which has to be verified for the problem at hand).
Now we do something thatonly works in finite dimensions: We conclude that, due to bound-
edness,(wk) contains a convergent subsequence(wk)K → w∗. Assuming the continuity of
f , E andC we see that

f(w∗) = lim
K∋k→∞

f(wk) = f ∗, E(w∗) = lim
K∋k→∞

E(wk) = 0, C(w∗) = lim
K∋k→∞

C(wk) ≤ 0.

Therefore,w∗ solves the problem.

We note that for doing the same in Banach space, we need a replacement for the compact-
ness argument, which will lead us to weak convergence and weak compactness. Further-
more, we need the continuity of the functionf and of the operatorsE andC with respect
to the norm topology and/or the weak topology.

2. Uniqueness

Uniqueness usually relies on strict convexity of the problem, i.e.,f strictly convex,E linear
andCi convex. This approach can be easily transfered to the infinite-dimensional case.

3. Optimality conditions

Assuming continuous differentiability of the functionsf ,C, andE, and that the constraints
satisfy a regularity condition on the constraints, calledconstraint qualification(CQ) at the
solution, the following first-order optimality conditionshold true at a solutionw∗:

Karush-Kuhn-Tucker conditions:

There exist Lagrange multipliersλ∗ ∈ R
m andµ∗ ∈ R

p such that(w∗, λ∗, µ∗) solves the
following KKT-system:

∇f(w) + C ′(w)Tλ+ E ′(w)Tµ = 0,

E(w) = 0,

C(w) ≤ 0, λ ≥ 0, C(w)Tλ = 0.

Here, the column vector∇f(w) = f ′(w)T ∈ R
n is the gradient off andC ′(w) ∈ R

m×n,
E ′(w) ∈ R

p×n are the Jacobian matrices ofC andE.

All really efficient optimization algorithms for (1.3) build upon these KKT-conditions.
Therefore, it will be very important to derive first order optimality conditions for the infinite-
dimensional problem (1.1). Since the KKT-conditions involve derivatives, we have to ex-
tend the notion of differentiability to operators between Banach spaces. This will lead us
to the concept of Fréchet-differentiability. For concrete problems, the appropriate choice
of the underlying function spaces is not always obvious, butit is crucial for being able to
prove the Fŕechet-differentiability of the functionf and the operatorsC,E and for verifying
constraint qualifications.

4. Optimization algorithms
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As already said, modern optimization algorithms are based on solving the KKT system.
For instance, for problems without inequality constraints, the KKT system reduces to the
following (n+ p)× (n+ p) system of equations:

G(w, µ)
def
=

(
∇f(w) + E ′(w)Tµ

E(w)

)

= 0. (1.5)

One of the most powerful algorithms for equality constrained optimization, the Lagrange-
Newton method, consists in applying Newton’s method to the equation (1.5):

Lagrange-Newton method:

Fork = 0, 1, 2, . . .:

1. STOP ifG(wk, µk) = 0.
2. Computesk = (skw, s

k
µ)
T by solving

G′(wk, µk)sk = −G(wk, µk)

and setwk+1 := wk + skw, µk+1 := µk + skµ.

SinceG involves first derivatives, the matrixG′(w, µ) involves second derivatives. For the
development of Lagrange-Newton methods for the problem class (1.1) we thus need second
derivatives off andE.

There are many more aspects that will be covered, but for the time being we have given
sufficient motivation for the material to follow.

1.2 Examples for optimization problems with PDEs

We give several simple, but illustrative examples for optimization problems with PDEs.

1.2.1 Optimization of a stationary heating process

Consider a solid body occupying the domainΩ ⊂ R
3. Let y(x), x ∈ Ω denote the tempera-

ture of the body at the pointx.

We want to heat or cool the body in such a way that the temperature distributiony coincides
as good as possible with a desired temperature distributionyd : Ω → R.
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Boundary control

If we apply a temperature distributionu : ∂Ω → R to the boundary ofΩ then the tempera-
ture distributiony in the body is given by theLaplace equation

−∆y(x) = 0, x ∈ Ω (1.6)

together with the boundary condition ofRobin type

κ
∂y

∂ν
(x) = β(x) (u(x)− y(x)), x ∈ ∂Ω,

whereκ > 0 is the heat conduction coefficient of the material of the bodyandβ : ∂Ω →
(0,∞) is a positive function modelling the heat transfer coefficient to the exterior.

Here,∆y is the Laplace operator defined by

∆y(x) =
n∑

i=1

yxixi(x)

with the abbreviation

yxixi(x) =
∂2y

∂x2i
(x)

and ∂y
∂ν
(x) is the derivative in the direction of the outer unit normalν(x) of ∂Ω atx, i.e.,

∂y

∂ν
(x) = ∇y(x) · ν(x), x ∈ ∂Ω.

As we will see, the Laplace equation (1.6) is anelliptic partial differential equation of
second order.

In practice, the controlu is restricted by additional constraints, for example by upper and
lower bounds

a(x) ≤ u(x) ≤ b(x), x ∈ ∂Ω.

To minimize the distance of the actual and desired temperature y andyd, we consider the
following optimization problem.

min f(y, u)
def
=

1

2

∫

Ω

(y(x)− yd(x))
2 dx+

α

2

∫

∂Ω

u(x)2 dS(x)

subject to −∆y = 0 onΩ,
(State equation)∂y

∂ν
=
β

κ
(u− y) on∂Ω,

a ≤ u ≤ b on∂Ω (Control constraints).

The first term in the objective functionalf(y, u) measures the distance ofy andyd, the
second term is a regularization term with parameterα ≥ 0 (typically α ∈ [10−5, 10−3]),
which leads to improved smoothness properties of the optimal control forα > 0.
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If we set

E(y, u)
def
=

(
−∆y

∂y
∂ν

− β
κ
(u− y)

)

, C(y, u)
def
=

(
a− u
u− b

)

,

whereY andU are appropriately chosen Banach spaces of functions

y : Ω → R, u : ∂Ω → R,

Z = Z1 × Z2 with appropriately chosen Banach spacesZ1, Z2 of functions

z1 : Ω → R, z2 : ∂Ω → R,

V = U × U , and

K = {(v1, v2) ∈ U × U : vi(x) ≤ 0, x ∈ ∂Ω} ,

then the above optimal control problem is of the form (1.1).

One of the crucial points will be to choose the above functionspaces in such a way thatf ,E,
andC are continuous and sufficiently often differentiable, to ensure existence of solutions,
the availability of optimality conditions, etc.

Boundary control with radiation boundary

If we take heat radiation at the boundary of the body into account, we obtain a nonlinear
Stefan-Boltzmann boundary condition. This leads to the semilinear state equation (i.e., the
highest order term is still linear)

−∆y = 0 onΩ,
∂y

∂ν
=
β

κ
(u4 − y4) on∂Ω.

This is a problem of the form (1.1) with

E(y, u)
def
=

(
−∆y

∂y
∂ν

− β
κ
(u4 − y4)

)

and the rest as before.

Distributed control

Instead of heating at the boundary it is in some applicationsalso possible to apply a dis-
tributed heat source as control. This can for example be achieved by using electro-magnetic
induction.
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If the boundary temperature is zero then, similar as above, we obtain the problem

min f(y, u)
def
=

1

2

∫

Ω

(y(x)− yd(x))
2 dx+

α

2

∫

Ω

u(x)2 dx

subject to −∆y = γ u onΩ,

y = 0 on∂Ω,

a ≤ u ≤ b onΩ.

Here, the coefficientγ : Ω → [0,∞) weights the control. The choiceγ = 1Ωc for some
control regionΩc ⊂ Ω restricts the action of the control to the control regionΩc.

If we assume a surrounding temperatureya then the state equation changes to

−∆y = γ u onΩ,
∂y

∂ν
=
β

κ
(ya − y) on∂Ω.

Problems with state constraints

In addition to control constraint alsostate constraints

l ≤ y ≤ r

with functionsl < r are of practical interest. They are much harder to handle than control
constraints.

1.2.2 Optimization of an unsteady heating processes

In most applications, heating processes are time-dependent. Then the temperaturey : Ω ×
[0, T ] → R depends on space and time. We set

Q
def
= Ω× (0, T ), Σ = ∂Ω× (0, T ).

Boundary control

Let yd be a desired temperature distribution at the end timeT andy0 be the initial temper-
ature of the body. To find a controlu : Σ → R that minimizes the distance of the actual
temperaturey(·, T ) at the end time and the desired temperatureyd, we consider similar as
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above the following optimization problem.

min f(y, u)
def
=

1

2

∫

Ω

(y(T, x)− yd(x))
2 dx+

α

2

∫ T

0

∫

∂Ω

u(x, t)2 dS(x) dt

subject to yt −∆y = 0 onQ,
∂y

∂ν
=
β

κ
(u− y) onΣ,

y(x, 0) = y0(x) onΩ

a ≤ u ≤ b onΣ.

Here,yt denotes the partial derivative with respect to time and∆y is the Laplace operator
in space. The PDE

yt −∆y = 0

is calledheat equationand is the prototype of aparabolicpartial differential equation.

Similarly, unsteady boundary control with radiation and unsteady distributed control can be
derived from the steady counterparts.

Optimal control problems with linear state equation and quadratic objective function are
calledlinear-quadratic. If the PDE is nonlinear in lower order terms then the PDE is called
semilinear.

1.2.3 Optimal design

A very important dscipline is optimal design. Here, the objective is to optimize the shape
of some object. A typical example is the optimal design of a wing or a whole airplane with
respect to certain objective, e.g., minimal drag, maximum lift or a combination of both.

Depending on the quality of the mathematical model employed, the flow around a wing is
described by the Euler equations or (better) by the compressible Navier-Stokes equations.
Both are systems of PDEs. A change of the wing shape would then result in a change of the
spatial flow domainΩ and thus, the design parameter is the domainΩ itself or a description
of it (e.g. a surface describing the shape of the wing). Optimization problems of this type
are very challenging.

Therefore, we look here at a much simpler example:

Consider a very thin elastic membrane spanned over the domainΩ ⊂ R
2. Its thickness

u(x) > 0, x ∈ Ω, varies (but is very small). At the boundary ofΩ, the membrane is
clamped at the levelx3 = 0.

Given a vertical force distributiong : Ω → R acting from below, the membrane takes
the equilibrium position described by the graph of the function y : Ω → R (we assume
that the thickness is negligibly compared to the displacement). For small displacement, the
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mathematical model for this membrane then is given by the following elliptic PDE:

−div(u∇y) = g onΩ,

y = 0 on∂Ω,

Here, divv =
∑

i(vi)xi denotes the divergence ofv : Ω → R
2.

The design goal consists in finding an optimal thicknessu subject to the thickness con-
straints

a(x) ≤ u(x) ≤ b(x) x ∈ Ω

and the volume constraint ∫

Ω

u(x) dx ≤ V

such that the compliance

f(y) =

∫

Ω

g(x)y(x) dx

of the membrane is as small as possible. The smaller the compliance, the stiffer the mem-
brane with respect to the loadg. We obtain the following optimal design problem

min f(y)
def
=

∫

Ω

g(x)y(x)dx

subject to − div(u∇y) = g onΩ,

y = 0 on∂Ω,

a ≤ u ≤ b onΩ,
∫

Ω

u(x) dx ≤ V.
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Chapter 2

Linear functional analysis and Sobolev
spaces

We have already seen that PDEs do in practical relevant situations not necessarily have
classical solutions. A satisfactory solution theory can bedeveloped by using Sobolev spaces
and functional analysis.

We recall first several basics on Banach and Hilbert spaces. Details can be found in any
book on linear functional analysis, e.g., [Al99], [Jo98], [ReRo93], [Wl71], [Yo80].

2.1 Banach and Hilbert spaces

2.1.1 Basic definitions

Definition 2.1.1 (Norm, Banach space)
LetX be a real vector space.

i) A mapping‖ · ‖ : X 7→ [0,∞) is a normonX, if

1) ‖u‖ = 0 ⇐⇒ u = 0,

2) ‖λu‖ = |λ|u ∀ u ∈ X, λ ∈ R,

3) ‖u+ v‖ ≤ ‖u‖ + ‖v‖ ∀ u, v ∈ X.

ii) A normed real vector spaceX is called (real)Banach spaceif it is complete, i.e., if any
Cauchy sequence(un) has a limitu ∈ X, more precisely, iflimm,n→∞ ‖um − un‖ =
0 then there isu ∈ X with limn→∞ ‖un − u‖ = 0.

15
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Example 2.1.2

1. The function space

C(Ω̄) =
{
u : Ω̄ → R : u continuous

}

is a Banach space with the sup-norm

‖u‖C(Ω̄) = sup
x∈Ω̄

|u(x)|.

2. For a multiindexα = (α1, . . . , αn) ∈ N
n
0 we define its order by|α|

def
=
∑n

i=1 αi and
associate the|α|-th order partial derivative atx

Dαu(x)
def
=

∂|α|u

∂xα1
1 · · · ∂xαn

n

(x).

The spaces
Ck(Ω̄) =

{
u ∈ C(Ω̄) : Dαu ∈ C(Ω̄) for |α| ≤ k

}

are Banach spaces with the norm

‖u‖Ck(Ω̄)

def
=
∑

|α|≤k

‖Dαu‖C(Ω̄).

Definition 2.1.3 (Inner product, Hilbert space)
LetH be a real vector space.

i) A mapping(·, ·) : H ×H 7→ R is an inner productonH, if

1) (u, v) = (v, u) ∀ u, v ∈ H,

2) For everyv ∈ H the mappingu ∈ H 7→ (u, v) is linear,

3) (u, u) ≥ 0 ∀ u ∈ H and(u, u) = 0 ⇐⇒ u = 0.

ii) A vector spaceH with inner product(·, ·) and associated norm

‖u‖
def
=
√

(u, u)

is calledPre-Hilbert space.

iii) A Pre-Hilbert space(H, (·, ·)) is calledHilbert spaceif it is complete under its norm
‖u‖

def
=
√

(u, u).

Example 2.1.4 Let ∅ 6= Ω ⊂ R
n be open and bounded. Then(C(Ω̄), (·, ·)L2) is a Pre-

Hilbert space with theL2-inner product

(u, v)L2 =

∫

Ω

u(x) v(x) dx.

Note that(C(Ω̄), (·, ·)L2) is not complete (why?).
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Theorem 2.1.5 LetH be a Pre-Hilbert space. Then theCauchy-Schwarz inequalityholds

|(u, v)| ≤ ‖u‖‖v‖ ∀ u, v ∈ H.

Many spaces arising in applications have the important property that they contain a count-
able dense subset.

Definition 2.1.6 A Banach spaceX is called separableif it contains a countable dense
subset. I.e., there existsY = {xi ∈ X : i ∈ N} ⊂ X such that

∀ x ∈ X, ∀ ε > 0 : ∃ y ∈ Y : ‖x− y‖X < ε.

Example 2.1.7 For boundedΩ the spaceC(Ω̄) is separable (the polynomials with rational
coefficients are dense by Weierstraß’s approximation theorem).

2.1.2 Linear operators and dual space

Obviously, linear partial differential operators define linear mappings between function
spaces. We recall the following definition.

Definition 2.1.8 (Linear operator)
LetX, Y be normed vector spaces with norms‖ · ‖X , ‖ · ‖Y .

i) A mappingA : X → Y is calledlinear operatorif it satisfies

A(λu+ µv) = λAu+ µAv ∀ u, v ∈ X, λ, µ ∈ R.

TherangeofA is defined by

R(A)
def
= {y ∈ Y : ∃ x ∈ X : y = Ax}

and thenull spaceofA by

N(A)
def
= {x ∈ X : Ax = 0} .

ii) ByL(X, Y ) we denote the space of all linear operatorsA : X → Y that are bounded
in the sense that

‖A‖X,Y
def
= sup

‖u‖X=1

‖Au‖Y <∞.

L(X, Y ) is a normed space with theoperator norm‖ · ‖X,Y .

Theorem 2.1.9 If Y is a Banach space thenL(X, Y ) is a Banach space.
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The following theorem tells us, as a corollary, that ifY is a Banach space, any operator
A ∈ L(X, Y ) is determined uniquely by its action on a dense subspace.

Theorem 2.1.10LetX be a normed space,Y be a Banach space and letU ⊂ X be a dense
subspace (carrying the same norm asX). Then for allA ∈ L(U, Y ), there exists a unique
extensionÃ ∈ L(X, Y ) with Ã|U = A. For this extension, there holds‖Ã‖X,Y = ‖A‖U,Y .

Definition 2.1.11 (Linear functionals, dual space)

i) LetX be a Banach space. A bounded linear operatoru∗ : X → R, i.e.,u∗ ∈ L(X,R)
is called abounded linear functionalonX.

ii) The spaceX∗ def
= L(X,R) of linear functionals onX is calleddual spaceofX and is

(by Theorem 2.1.9) a Banach space with the operator norm

‖u∗‖
def
= sup

‖u‖X=1

|u∗(u)|.

iii) We use the notation
〈u∗, u〉X∗,X

def
= u∗(u).

〈·, ·〉X∗,X is called thedual pairingofX∗ andX.

Of essential importance is the following

Theorem 2.1.12(Riesz representation theorem)
The dual spaceH∗ of a Hilbert spaceH is isometric toH itself. More precisely, for every
v ∈ H the linear functionalu∗ defined by

〈u∗, u〉H∗,H
def
= (v, u)H ∀ u ∈ H

is in H∗ with norm‖u∗‖H∗ = ‖v‖H . Vice versa, for anyu∗ ∈ H∗ there exists a unique
v ∈ H such that

〈u∗, u〉H∗,H = (v, u)H ∀ u ∈ H

and‖u∗‖H∗ = ‖v‖H .

In particular, a Hilbert space is reflexive (we will introduce this later).

Definition 2.1.13 LetX, Y be Banach spaces. Then for an operatorA ∈ L(X, Y ) the dual
operatorA∗ ∈ L(Y ∗, X∗) is defined by

〈A∗u, v〉X∗,X = 〈u,Av〉Y ∗,Y ∀ u ∈ Y ∗, v ∈ X.

It is easy to check that‖A∗‖Y ∗,X∗ = ‖A‖X,Y .
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2.2 Sobolev spaces

To develop a satisfactory theory for PDEs, it is necessary toreplace the classical function
spacesCk(Ω̄) by Sobolev spacesW k,p(Ω). Roughly speaking, the spaceW k,p(Ω) consists
of all functionsu ∈ Lp(Ω) that possess (weak) partial derivativesDαu ∈ Lp(Ω) for |α| ≤ k.

We recall

2.2.1 Lebesgue spaces

Our aim is to characterize the function spaceLp(Ω) that is complete under theLp-norm,
where

‖u‖Lp(Ω) =

(∫

Ω

|u(x)|p dx

)1/p

, p ∈ [1,∞),

‖u‖L∞(Ω) = ess sup
x∈Ω

|u(x)|(= sup
x∈Ω

|u(x)| for u ∈ C(Ω̄)).

2.2.2 Lebesgue measurable functions and Lebesgue integral

Definition 2.2.1 A collectionS ⊂ P(Rn) of subsets ofRn is calledσ-algebra onRn if

i) ∅,Rn ∈ S,

ii) A ∈ S impliesRn \ A ∈ S,

iii) if (Ak)k∈N ⊂ S then
⋃∞
k=1Ak ∈ S.

A measureµ : S → [0,∞] is a mapping with the following properties:

i) µ(∅) = 0.

ii) If (Ak)k∈N ⊂ S is a sequence of pairwise disjoint sets then

µ

(
∞⋃

k=1

Ak

)

=
∞∑

k=1

µ(Ak) (σ-additivity).

Of essential importance is theσ-algebra of Lebesgue measurable sets with corresponding
Lebesgue measure.

Theorem 2.2.2 There exists theσ-algebraBn of Lebesgue measurable sets onR
n and the

Lebesgue measureµ : Bn → [0,∞] with the properties:
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i) Bn contains all open sets (and thus all closed sets).

ii) µ is a measure onBn.

iii) If B is any ball inRn thenµ(B) = |B|.

iv) If A ⊂ B withB ∈ Bn andµ(B) = 0 thenA ∈ Bn andµ(A) = 0 ((Rn,Bn, µ) is a
complete measure space).

The setsA ∈ Bn are calledLebesgue measurable.

Notation: If some property holds for allx ∈ R \N with N ⊂ Bn, µ(N) = 0, then we say
that it holds almost everywhere (a.e.).2

Definition 2.2.3 We say thatf : Rn → [−∞,∞] is Lebesgue measurableif

{x ∈ R
n : f(x) > α} ∈ Bn ∀ α ∈ R.

If A ∈ Bn and f : A → [−∞,∞] then we callf Lebesgue measurable onA if f1A is
Lebesgue measurable. Here, we use the conventionf1A = f onA andf1A = 0 otherwise.

Remark For openΩ ⊂ R
n any functionf ∈ C(Ω) is measurable, since{f > α} is

relatively open inΩ (and thus open).2

We now extend the classical integral to Lebesgue measurablefunctions.

Definition 2.2.4 The set of nonnegative elementary functions is defined by

E+(R
n)

def
=

{

f =
m∑

k=1

αk1Ak
: (Ak)1≤k≤m ⊂ Bn pairwise disjoint,αk ≥ 0,m ∈ N

}

.

The Lebesgue integral off =
∑m

k=1 αk1Ak
∈ E+(R

n) is defined by

∫

Rn

f(x) dµ(x)
def
=

m∑

k=1

αkµ(Ak).

An extension to general Lebesgue measurable functions is obtained by the following fact.

Lemma 2.2.5 For any sequence(fk) of Lebesgue measurable functions also

sup
k
fk, inf

k
fk, lim sup

k→∞
fk, lim inf

k→∞
fk

are Lebesgue measurable.

For any Lebesgue measurable functionf ≥ 0 there exists a monotone increasing sequence
(fk)k∈N ⊂ E+(R

n) with f = supk fk.
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This motivates the following definition of the Lebesgue integral.

Definition 2.2.6 (Lebesgue integral)

i) For a nonnegative Lebesgue measurable functionf : R
n → [0,∞] we define the

Lebesgue integral off by
∫

Rn

f(x) dµ(x)
def
= sup

k

∫

Rn

fk(x) dµ(x),

where(fk)k∈N ⊂ E+(R
n) is a monotone increasing sequence withf = supk fk.

ii) For a Lebesgue measurable functionf : Rn → [−∞,∞] we define the Lebesgue
integral by

∫

Rn

f(x) dµ(x)
def
=

∫

Rn

f+(x) dµ(x)−

∫

Rn

f−(x) dµ(x)

with f+ = max(f, 0), f− = max(−f, 0) if one of the terms on the right hand side is
finite. In this casef is calledintegrable.

iii) If A ∈ Bn andf : A → [−∞,∞] is a function such thatf1A is integrable then we
define ∫

A

f(x) dµ(x)
def
=

∫

Rn

f(x)1A(x) dµ(x).

Notation: In the sequel we will writedx instead ofdµ(x). 2

2.2.3 Definition of Lebesgue spaces

Clearly, we can extend theLp-norm to Lebesgue measurable functions.

Definition 2.2.7 LetΩ ∈ Bn. We define forp ∈ [1,∞) the seminorm

‖u‖Lp(Ω)

def
=

(∫

Rn

|u(x)|p
)1/p

.

and
‖u‖L∞(Ω)

def
= ess sup

x∈Ω

|u(x)|
def
= inf {α ≥ 0 : µ({|u| > α}) = 0} .

Now, for1 ≤ p ≤ ∞ we define the spaces

Lp(Ω)
def
=
{

u : Ω → R Lebesgue measurable: ‖u‖Lp(Ω) <∞
}

.
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These are not normed space since there exist mesurable functionsu : Ω → R, u 6= 0, with
‖u‖Lp = 0.

We use the equivalence relation

u∼v in Lp(Ω) :⇐⇒ ‖u− v‖Lp(Ω) = 0
by Lemma 2.2.8

⇐⇒ u = v a.e.

to defineLp(Ω) = Lp(Ω)/∼ as the space of equivalence classes of a.e. identical functions,
equipped with the norm‖ · ‖Lp.

Finally we define

Lploc(Ω)
def
= {u : Ω → R Lebesgue measurable: u ∈ Lp(K) for all K ⊂ Ω compact}

and setLploc(Ω)
def
= Lploc(Ω)/∼.

In the following we will consider elements ofLp andLploc as functions that are known up to
a set of measure zero.

Remark It is easy to see thatLp(Ω) ⊂ L1
loc(Ω) for all p ∈ [1,∞]. 2

We collect several important facts of Lebesgue spaces.

Lemma 2.2.8 For all u, v ∈ Lp(Ω), p ∈ [1,∞] we have

‖u− v‖Lp = 0 ⇐⇒ u = v a.e..

Proof: The assertion is obvious forp = ∞. Forp ∈ [1,∞) letw = u− v.

”=⇒:” We have for allk ∈ N

0 = ‖w‖Lp ≥
1

k
µ({|w| ≥ 1/k})1/p.

Henceµ({w ≥ 1/k}) = 0 and consequently

µ(w 6= 0) = µ

(
∞⋃

k=1

{|w| ≥ 1/k}

)

≤
∞∑

k=1

µ {|w| ≥ 1/k}) = 0.

”⇐=:” If w = 0 a.e. then|w|p = 0 on R
n \ N for someN with µ(N) = 0. Hence,

|w|p = supk wk with (wk) ⊂ E+(R
n), where without restrictionwk = 0 onRn \N . Hence

∫

Rn wk dx = 0 and consequently
∫

Rn |w|
pdx = 0. 2

Theorem 2.2.9 (Fischer-Riesz)The spacesLp(Ω), p ∈ [1,∞], are Banach spaces. The
spaceL2(Ω) is a Hilbert space with inner product

(u, v)
def
=

∫

Ω

uv dx.
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Lemma 2.2.10 (Hölder inequality)
LetΩ ∈ Bn. Then for allp ∈ [1,∞] we have with the dual exponentq ∈ [1,∞] satisfying
1
p
+ 1

q
= 1 for all u ∈ Lp(Ω) andv ∈ Lq(Ω) theHölder inequality

uv ∈ L1(Ω) and ‖uv‖L1 ≤ ‖u‖Lp‖v‖Lq .

Now we can characterize the dual space ofLp-spaces.

Theorem 2.2.11Let Ω ∈ Bn, p ∈ [1,∞) and q ∈ (1,∞] the dual exponent satisfying
1
p
+ 1

q
= 1. Then the dual space(Lp(Ω))∗ can be identified withLq(Ω) by means of the

isometric isomorphism

v ∈ Lq(Ω) 7→ u∗ ∈ (Lp(Ω))∗, where 〈u∗, u〉(Lp)∗,Lp
def
=

∫

Ω

u(x)v(x) dx.

Remark Note however thatL1 is only a subspace of(L∞)∗. 2

2.2.4 Density results and convergence theorems

A fundamental result is the following:

Theorem 2.2.12 (Dominated convergence theorem)LetΩ ∈ Bn. Assume thatfk : Ω →
R are measurable with

fk → f a.e. and |fk| ≤ g a.e.

with a functiong ∈ L1(Ω). Thenfk, f ∈ L1(Ω) and
∫

Ω

fk dx→

∫

Ω

f dx, fk → f in L1(Ω).

Next we state the important fact that the set of ”nice” functions

C∞
c (Ω)

def
=
{
u ∈ C∞(Ω̄) : supp(u) ⊂ Ω compact

}

is actually dense inLp(Ω) for all p ∈ [1,∞).

Lemma 2.2.13 LetΩ ⊂ R
n be open. ThenC∞

c (Ω) is dense inLp(Ω) for all p ∈ [1,∞).

A quite immediate consequence is the following useful result.

Lemma 2.2.14 LetΩ ⊂ R
n be open andf ∈ L1

loc(Ω) with
∫

Ω

f(x)ϕ(x) dx = 0 ∀ ϕ ∈ C∞
c (Ω).

Thenf = 0 a.e.
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2.2.5 Weak derivatives

The definition of weak derivatives is motivated by the fact that for any functionu ∈ Ck(Ω̄)
and any multiindexα ∈ N

n
0 , |α ≤ k, the identity holds (integrate|α|-times by parts)

∫

Ω

Dαuϕ dx = (−1)|α|
∫

Ω

uDαϕdx, ∀ ϕ ∈ C∞
c (Ω). (2.1)

This motivates the definition

Definition 2.2.15 Let Ω ⊂ R
n be open and letu ∈ L1

loc(Ω). If there exists a function
w ∈ L1

loc(Ω) such that

∫

Ω

wϕdx = (−1)|α|
∫

Ω

uDαϕdx, ∀ ϕ ∈ C∞
c (Ω) (2.2)

thenDαu := w is called theα-th weak partial derivative ofu.

Remark

1. By Lemma 2.2.14, (2.2) determines the weak derivativeDαu ∈ L1
loc(Ω) uniquely.

2. Foru ∈ Ck(Ω̄) andα ∈ N
n
0 , |α| ≤ k, the classical derivativew = Dαu satisfies (2.1)

and thus (2.2). Hence, the weak derivative is consistent with the classical derivative.2

2.2.6 Regular domains and integration by parts

Fork ∈ N0 andβ ∈ (0, 1] let

Ck,β(Rn) =
{
u ∈ Ck(Rn) : Dαu β-Hölder continuous for|α| = k

}
.

Here,f is β-Hölder continuous if there exists a constantC > 0 such that

|f(x)− f(y)| ≤ C|x− y|β ∀ x, y.

Of course,1-Hölder continuity is Lipschitz continuity.

We setCk,0(Rn) = Ck(Rn).

Definition 2.2.16 (Ck,β-boundary, unit normal field)
LetΩ ⊂ R

n be open and bounded.
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a) We say thatΩ has aCk,β-boundary, k ∈ N0 ∪ {∞}, 0 ≤ β ≤ 1, if for any x ∈ ∂U
there existsr > 0, k ∈ {1, . . . , n}, and a functionγ ∈ Ck(Rn−1) such that

Ω ∩ B(x; r) = {y ∈ B(x; r) : yk < γ(y1, . . . yk−1, yk+1, . . . , yn)} .

Instead ofC0,1-boundary we say alsoLipschitz-boundary.

b) If ∂Ω isC0,1 then we can define a.e. theunit outer normal fieldν : ∂Ω → R
n, where

ν(x), ‖ν(x)‖2 = 1, is the outward pointing unit normal of∂Ω atx.

c) Let∂Ω beC0,1. We call the directional derivative

∂u

∂ν
(x)

def
= ν(x) · ∇u(x), x ∈ ∂Ω,

thenormal derivativeof u.

We recall the Gauß-Green theorem (integration by parts formula).

Theorem 2.2.17LetΩ ⊂ R
n be open and bounded withC0,1-boundary. Then for allu, v ∈

C1(Ω̄)

∫

Ω

uxi(x)v(x) dx = −

∫

Ω

u(x)vxi(x) dx+

∫

∂Ω

u(x)v(x)νi(x) dS(x).

2.2.7 Sobolev spaces

We will now introduce subspacesW k,p(Ω) of functionsu ∈ Lp(Ω), for which the weak
derivativesDαu, |α| ≤ k, are inLp(Ω).

Definition 2.2.18 Let Ω ⊂ R
n be open. Fork ∈ N0, p ∈ [1,∞], we define theSobolev

spaceW k,p(Ω) by

W k,p(Ω) = {u ∈ Lp(Ω) : u has weak derivativesDαu ∈ Lp(Ω) for all |α| ≤ k} (2.3)

equipped with the norm

‖u‖W k,p(Ω)

def
=




∑

|α|≤k

‖Dαu‖pLp





1/p

, p ∈ [1,∞),

‖u‖W k,∞(Ω)

def
=
∑

|α|≤k

‖Dαu‖L∞(Ω).
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Remark 2.2.19 • The setC∞(Ω) ∩W k,p(Ω), k ∈ N0, 1 ≤ p < ∞, is dense inW k,p(Ω).
Hence,W k,p(Ω) is the completion of{u ∈ C∞(Ω) : ‖u‖W k,p <∞} with respect to the
norm‖ · ‖W k,p.

• If Ω is a bounded Lipschitz-domain thenC∞(Ω̄) is dense inW k,p(Ω), k ∈ N0, 1 ≤ p <
∞.

Notations:

1. In the casep = 2 one writesHk(Ω)
def
= W k,2(Ω). We note thatW 0,p(Ω) = Lp(Ω) for

p ∈ [1,∞].

2. For weak partial derivatives we use also the notationuxi , uxixj , uxixjxk , . . .

3. Foru ∈ H1(Ω) we set

∇u(x) =






ux1(x)
...

uxn(x)




 .

2

Remark Simple examples show that weak differentiability does not necessarily ensures
continuity. We have for example withΩ

def
= B(0; 1) andu(x)

def
= ‖x‖−β that

u ∈ W 1,p(Ω) ⇐⇒ β <
n− p

p
.

2

Theorem 2.2.20LetΩ ⊂ R
n be open,k ∈ N0, andp ∈ [1,∞]. ThenW k,p(Ω) is a Banach

space.

Moreover, the spaceHk(Ω) = W k,2(Ω) is a Hilbert space with inner product

(u, v)Hk(Ω) =
∑

|α|≤k

(Dαu,Dαv)L2(Ω).

To incorporate homogeneous boundary conditions already inthe function space we define
the following subspace.

Definition 2.2.21 LetΩ ⊂ R
n be open. Fork ∈ N0, p ∈ [1,∞], we denote by

W k,p
0 (Ω)

the closure ofC∞
c (Ω) in W k,p(Ω) (i.e., for anyu ∈ W k,p

0 (Ω) there exists a sequence(ϕi) ⊂
C∞
c (Ω) with limi→∞ ‖u− ϕi‖W k,p(Ω) = 0). The space is equipped with the same norm as

W k,p(Ω) and is a Banach space. The spaceHk
0 (Ω) = W k,2

0 (Ω) is a Hilbert space.
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Remark 2.2.22 If Ω has Lipschitz-boundary thenW k,p
0 (Ω) contains exactly allu ∈ W 1,p(Ω)

such thatDαu = 0 for |α| ≤ k − 1 on ∂Ω with an appropriate interpretation of thetraces
Dαu|∂Ω. 2

We consider next the appropriate assignment of boundary values (so calledboundary traces)
for functionsu ∈ W k,p(Ω) if Ω has Lipschitz-boundary.

If u ∈ W k,p(Ω) ∩ C(Ω̄) then the boundary values can be defined in the classical senseby
using the continuous extension. However, since∂Ω is a set of measure zero and functions
u ∈ W k,p(Ω) are only determinded up to a set of measure zero, the definition of boundary
values requires care. We resolve the problem by defining atrace operator.

Theorem 2.2.23Assume thatΩ ⊂ R
n is open and bounded with Lipschitz-boundary. Then

for all p ∈ [1,∞] there exists a unique bounded linear operator

T : W 1,p(Ω) → Lp(∂Ω)

such that
Tu = u|∂Ω ∀ u ∈ W 1,p(Ω) ∩ C(Ω̄).

Here,‖T‖W 1,p(Ω),Lp(∂Ω) depends only onΩ andp. Tu is called thetraceof u on∂Ω.

2.2.8 Poincaŕe’s inequality

We have seen that the trace of functions inHk
0 (Ω), k ≥ 0, vanishes. For the treatment of

boundary value problems it will be useful that the semi-norm

|u|Hk(Ω)

def
=




∑

|α|=k

‖Dαu‖2L2





1/2

(2.4)

defines an equivalent norm on the Hilbert spaceHk
0 (Ω). It is obvious that

|u|Hk(Ω) ≤ ‖u‖Hk(Ω).

We will now show that also

‖u‖Hk(Ω) ≤ C |u|Hk(Ω) ∀ u ∈ Hk
0 (Ω). (2.5)

Theorem 2.2.24(Poincaŕe’s inequality)
LetΩ ⊂ R

n be open and bounded. Then there exists a constantC > 0 with

|u|Hk(Ω) ≤ ‖u‖Hk(Ω) ≤ C |u|Hk(Ω) ∀ u ∈ Hk
0 (Ω). (2.5)
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2.2.9 Sobolev imbedding theorem

Sobolev spaces are embedded in classical spaces:

Theorem 2.2.25Let Ω ⊂ R
n be open, bounded with Lipschitz-boundary. Letm ∈ N,

1 ≤ p <∞.

i) For all k ∈ N0, 0 < β < 1 with

m−
n

p
≥ k + β

one has the continuous embedding

Wm,p(Ω) ⊂ Ck,β(Ω̄).

More precisely, there exists a constantC > 0 such that for allu ∈ Wm,p(Ω) possibly
after modification on a set of measure zerou ∈ Ck,β(Ω̄) and

‖u‖Ck,β(Ω̄) ≤ C‖u‖Wm,p(Ω).

ii) For all k ∈ N0, 0 ≤ β ≤ 1 with

m−
n

p
> k + β

one has the compact embedding

Wm,p(Ω) ⊂⊂ Ck,β(Ω̄),

i.e., closed balls inWm,p(Ω) are relatively compact inCk,β(Ω̄).

iii) For q ≥ 1 andl ∈ N0 withm− n/p ≥ l − n/q one has the continuous embedding

Wm,p(Ω) ⊂ W l,q(Ω).

The embedding is compact ifm− n/p > l − n/q and for l = 0 we haveW 0,q(Ω) =
Lq(Ω).

For arbitrary open boundedΩ ⊂ R
n i), ii), iii) hold for Wm,p

0 (Ω) instead ofWm,p(Ω).

Proof: See for example [Al99], [Ad75], [Ev98].2

Example 2.2.26For n ≤ 3 we have the continuous imbeddingH1(Ω) ⊂ L6(Ω) and the
compact imbeddingH2(Ω) ⊂⊂ C(Ω̄) for n ≤ 3.
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2.2.10 The dual spaceH−1 of H1

0

The dual space of the Hilbert spaceH1
0 (Ω) is denoted byH−1(Ω). This space can be char-

acterized as follows:

Theorem 2.2.27For the spaceH−1(Ω), Ω ⊂ R
n open, the following holds:

H−1(Ω) =

{

v ∈ H1
0 (Ω) 7→ (f 0, v)L2 +

n∑

j=1

(f j, vxj)L2 : f j ∈ L2(Ω)

}

.

Furthermore,

‖f‖H−1 = min

{( n∑

j=0

‖f j‖
2

L2

)1/2

: 〈f, v〉H−1,H1
0
= (f 0, v)L2 +

n∑

j=1

(f j, vxj)L2 , f j ∈ L2(Ω)

}

.

Proof:

“⊂”: Let f ∈ H−1(Ω). By the Riesz representation theorem, there exists a uniqueu ∈
H1

0 (Ω) with
(u, v)H1 = 〈f, v〉H−1,H1

0
∀ v ∈ H1

0 (Ω).

Setf 0 = u, f j = uxj , j ≥ 1.

Then

(f 0, v)L2+
n∑

j=1

(f j, vxj)L2 = (u, v)L2+
n∑

j=1

(uxj , vxj)L2 = (u, v)H1 = 〈f, v〉H−1,H1
0

∀ v ∈ H1
0 (Ω).

“⊃”: For g0, . . . , gn ∈ L2(Ω), consider

g : v ∈ H1
0 (Ω) 7→ (g0, v)L2 +

n∑

j=1

(gj, vxj)L2 .

Obviously,g is linear. Furthermore, for allv ∈ H1
0 (Ω), there holds

|(g0, v)L2 +
n∑

j=1

(gj, vxj)L2| ≤ ‖g0‖L2‖v‖L2 +
n∑

j=1

‖gj‖L2‖vxj‖L2

≤

(
n∑

j=0

‖gj‖
2

L2

)1/2(

‖v‖2L2 +
n∑

j=1

‖vxj‖L2

)1/2

=

(
n∑

j=0

‖gj‖
2

L2

)1/2

‖v‖H1 .
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This showsg ∈ H−1(Ω) and

‖g‖H−1 ≤

(
n∑

j=0

‖gj‖
2

L2

)1/2

.

Now letf = g, letu be the Riesz representation, and choose

(f 0, . . . , fn) = (u, ux1 , . . . , uxn)

as above. Then by the Riesz representation theorem

‖g‖2H−1 = ‖f‖2H−1 = ‖u‖2H1 = ‖u‖2L2 +
n∑

j=1

‖uxj‖
2

L2 =
n∑

j=0

‖f j‖
2

L2 .

2
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2.3 Weak solutions of elliptic PDEs

In this section we sketch the theory of weak solutions for elliptic second order partial dif-
ferential equations. For more details we refer, e.g., to [Al99], [Ev98], [ReRo93], [Tr05],
[Wl71].

2.3.1 Weak solutions of the Poisson equation

Dirichlet boundary conditions

We start with the elliptic boundary value problem

−∆y = f onΩ, (2.6)

y = 0 on∂Ω, (Dirichlet condition) (2.7)

whereΩ ⊂ R
n is an open, bounded set andf ∈ L2(Ω). This admits discontinuous right

hand sidesf , e.g. source termsf that act only on a subset ofΩ. Since a classical solution
y ∈ C2(Ω) ∩ C1(Ω̄) exists at best for continuous right hand sides, we need a generalized
solution concept. It is based on avariational formulationof (2.6)–(2.7).

To this end let us assume thaty ∈ C2(Ω) ∩ C1(Ω̄) is a classical solution of (2.6)–(2.7).
Then we havey ∈ H1

0 (Ω) by Remark 2.2.22. Multiplying byv ∈ C∞
c (Ω) and integrating

overΩ yields

−

∫

Ω

∆y v dx =

∫

Ω

fv dx ∀ v ∈ C∞
c (Ω). (2.8)

It is easy to see that (2.6) and (2.8) are equivalent for classical solutions. Now integration
by parts gives

−

∫

Ω

yxixi v dx =

∫

Ω

yxivxi dx−

∫

∂Ω

yxi v νi dS(x) =

∫

Ω

yxivxi dx. (2.9)

Note that the boundary integral vanishes, sincev|∂Ω = 0. Thus, (2.8) is equivalent to

∫

Ω

∇y · ∇v dx =

∫

Ω

fv dx ∀ v ∈ C∞
c (Ω). (2.10)

We note that this variational equation makes already perfect sense in a larger space:

Lemma 2.3.1 The mapping

(y, v) ∈ H1
0 (Ω)

2 7→ a(u, v)
def
=

∫

Ω

∇y · ∇v dx ∈ R
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is bilinear and bounded:
|a(y, v)| ≤ ‖y‖H1‖v‖H1 . (2.11)

For f ∈ L2(Ω), the mapping

v ∈ H1
0 (Ω) 7→

∫

Ω

fv dx ∈ R

is linear and bounded:
∣
∣
∣
∣

∫

Ω

fv dx

∣
∣
∣
∣
= (f, v)L2 ≤ ‖f‖L2‖v‖L2 ≤ ‖f‖L2‖v‖H1

0
. (2.12)

Proof: Clearly,a(y, v) is bilinear. The boundedness follows from

|a(y, v)| ≤

∫

Ω

|∇y(x)T∇v(x)| dx ≤

∫

Ω

‖∇y(x)‖2‖∇v(x)‖2 dx

≤ ‖‖∇y‖2‖L2‖‖∇v‖2‖L2 = |y|H1|v|H1 ≤ ‖y‖H1‖v‖H1 = ‖y‖V ‖v‖V ,

where we have applied the Cauchy-Schwarz inequality.

The second assertion is trivial.2

By density and continuity, we can extend (2.10) toy ∈ H1
0 (Ω) andv ∈ H1

0 (Ω). We arrive
at thevariational formulation

∫

Ω

∇y · ∇v dx =

∫

Ω

fv dx ∀ v ∈ H1
0 (Ω). (2.13)

We summarize: (2.6) and (2.13) are equivalent for a classical solutiony ∈ C2(Ω)∩C1(Ω̄).
But the variational formulation (2.13) makes already perfectly sense fory ∈ H1

0 (Ω) and
f ∈ L2(Ω). This motivates the following definition.

Definition 2.3.2 A functiony ∈ H1
0 (Ω) is called weak solutionof the boundary value

problem(2.6)–(2.7) if it satisfies thevariational formulationor weak formulation
∫

Ω

∇y · ∇v dx =

∫

Ω

fv dx ∀ v ∈ H1
0 (Ω). (2.13)

In order to allow a uniform treatment of more general equations than (2.6)–(2.7), we intro-
duce the following abstract notation. Let

V = H1
0 (Ω),

a(y, v) =

∫

Ω

∇y · ∇v dx, y, v ∈ V, (2.14)

F (v) = (f, v)L2(Ω), v ∈ V. (2.15)
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Thena : V × V → R is a bilinear form,F ∈ V ∗ is a linear functional onV and (2.13) can
be written as

Findy ∈ V : a(y, v) = F (v) ∀ v ∈ V. (2.16)

Remark Sincea(y, ·) ∈ V ∗ for all y ∈ V andy ∈ V 7→ a(y, ·) ∈ V ∗ is continuous and
linear, there exists a bounded linear operatorA : V → V ∗ with

a(y, v) = 〈Ay, v〉V ∗,V ∀ y, v ∈ V. (2.17)

Then (2.16) can be written in the form

Findy ∈ V : Ay = F. (2.18)

2

We have the following important existence and uniqueness result for solutions of (2.16).

Lemma 2.3.3 (Lax-Milgram lemma)
LetV be a real Hilbert space with inner product(·, ·)V and leta : V ×V → R be a bilinear
form that satisfies with constantsα0, β0 > 0

|a(y, v)| ≤ α0‖y‖V ‖v‖V ∀ y, v ∈ V, (boundedness) (2.19)

a(y, y) ≥ β0‖y‖
2
V ∀ y ∈ V (V -coercivity). (2.20)

Then for any bounded linear functionalF ∈ V ∗ the variational equation(2.16) has a
unique solutiony ∈ V . Moreover,y satisfies

‖y‖V ≤
1

β0
‖F‖V ∗ . (2.21)

In particular the operatorA defined in(2.17)satisfies

A ∈ L(V, V ∗), A−1 ∈ L(V ∗, V ), ‖A−1‖V ∗,V ≤
1

β0
.

Remark If a(·, ·) is symmetric, i.e., ifa(y, v) = a(v, y) for all y, v ∈ V , then the Lax-
Milgram lemma is an immediate consequence of the Riesz representation theorem. In fact,
in this case(u, v) := a(u, v) defines a new inner product onV and the existence of a unique
solution of (2.16) follows directly from the Riesz representation theorem.2

Application of the Lax-Milgram lemma to (2.13) yields

Theorem 2.3.4 LetΩ ⊂ R
n be open and bounded with Lipschitz-boundary.

Then the bilinear forma in (2.14) is bounded andV -coercive forV = H1
0 (Ω) and the

associated operatorA ∈ L(V, V ∗) in (2.17)has a bounded inverse. In particular,(2.6)–
(2.7)has for allf ∈ L2(Ω) a unique weak solutiony ∈ H1

0 (Ω) given by(2.13)and satisfies

‖y‖H1(Ω) ≤ CP‖f‖L2(Ω),

whereCP depends onΩ but not onf .
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Proof: We verify the hypotheses of Lemma 2.3.3. Clearly,a(y, u) in (2.14) is bilinear. The
boundedness 2.19 follows from (2.11) Using the Poincaré’s inequality (2.5) we obtain

a(y, y) =

∫

Ω

∇y · ∇y dx = |y|2H1
0 (Ω) ≥

1

C2
‖y‖2H1

0 (Ω) =
1

C2
‖y‖2V

which shows theV -coercivity (2.20).

Finally, the definition ofF in (2.15) yields

‖F‖V ∗ = sup
‖v‖V =1

F (v) = sup
‖v‖V =1

(f, v)L2(Ω) ≤ sup
‖v‖V =1

‖f‖L2(Ω)‖v‖L2(Ω) ≤ ‖f‖L2(Ω).

Thus, the assertion holds withCP = C2 by the Lax-Milgram lemma.2

Boundary conditions of Robin type

We have seen that in heating applications the boundary condition is sometimes of Robin
type. We consider now problems of the form

−∆y + c0y = f onΩ, (2.22)
∂y

∂ν
+ αy = g on∂Ω, (Robin condition) (2.23)

whereΩ ⊂ R
n is open and bounded withC0,1-boundary,f ∈ L2(Ω) andg ∈ L2(∂Ω) are

given andc0 ∈ L∞(Ω), α ∈ L∞(∂Ω) are nonnegative coefficients.

Weak solutions can be defined similarly as above. Ify is a classical solution of (2.22)–(2.23)
then for any test functionv ∈ C1(Ω̄) integration by parts, see (2.9), yields as above

∫

Ω

(−∆y + c0y) v dx =

=

∫

Ω

∇y · ∇v dx+ (c0y, v)L2(Ω) −

∫

∂Ω

∂y

∂ν
v dS(x) =

∫

Ω

fv dx ∀ v ∈ C1(Ω̄).

Inserting the boundary condition∂y
∂ν

= −αy + g we arrive at

∫

Ω

∇y · ∇v dx+ (c0y, v)L2(Ω) + (αy, v)L2(∂Ω) = (f, v)L2(Ω) + (g, v)L2(∂Ω) ∀ v ∈ H1(Ω).

(2.24)
The extension tov ∈ H1(Ω) is possible, since fory ∈ H1(Ω) both sides are continuous
with respect tov ∈ H1(Ω) and sinceC1(Ω̄) is dense inH1(Ω).

Definition 2.3.5 A functiony ∈ H1(Ω) is called weak solutionof the boundary value
problem(2.22)–(2.23)if it satisfies thevariational formulationor weak formulation (2.24).
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To apply the general theory, we set

V = H1(Ω),

a(y, v) =

∫

Ω

∇y · ∇v dx+ (c0y, v)L2(Ω) + (αy, v)L2(∂Ω), y, v ∈ V, (2.25)

F (v) = (f, v)L2(Ω) + (g, v)L2(∂Ω), v ∈ V.

The Lax-Milgram lemma yields similarly as above

Theorem 2.3.6 Let Ω ⊂ R
n be open and bounded with Lipschitz-boundary and letc0 ∈

L∞(Ω), α ∈ L∞(∂Ω) be nonnegative with‖c0‖L2(Ω) + ‖α‖L2(∂Ω) > 0.

Then the bilinear forma in (2.25) is bounded andV -coercive forV = H1(Ω) and the
associated operatorA ∈ L(V, V ∗) in (2.17)has a bounded inverse. In particular,(2.6)–
(2.7) has for allf ∈ L2(Ω) andg ∈ L2(∂Ω) a unique weak solutiony ∈ H1(Ω) given by
(2.24)and satisfies

‖y‖H1(Ω) ≤ CR(‖f‖L2(Ω) + ‖g‖L2(∂Ω)),

whereCR depends onΩ, α, c0 but not onf, g.

Proof: The proof is an application of the Lax-Milgram lemma. The boundedness ofa(y, v)
and ofF (v) follows by the trace theorem. TheV -coercivity is a consequence of a general-
ized Poincaŕe inequality.2

A refined analysis yields the following result [Tr05].

Theorem 2.3.7 Let the assumptions of the previous theorem hold and letr > n/2, s >
n− 1, n ≥ 2. Then for anyf ∈ Lr(Ω) andg ∈ Ls(∂Ω) there exists a unique weak solution
y ∈ H1(Ω) ∩ C(Ω̄) of (2.6)–(2.7). There exists a constantC∞ > 0 with

‖y‖H1(Ω) + ‖y‖C(Ω̄) ≤ C∞(‖f‖Lr(Ω) + ‖g‖Ls(∂Ω)),

whereC∞ depends onΩ, α, c0 but not onf, g.

An analogous result holds for homogeneous Dirichlet boundary conditions instead of Robin
boundary conditions [KS80].

2.3.2 Weak solutions of uniformly elliptic equations

More generally, we can consider general second order elliptic PDEs of the form

Ly = f onΩ (2.26)
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with

Ly
def
= −

n∑

i,j=1

(aijyxi)xj + c0y, aij, c0 ∈ L∞, c0 ≥ 0, aij = aji (2.27)

andL is assumed to beuniformly elliptic in the sense that there is a constantθ > 0 such
that

n∑

i,j=1

aij(x)ξiξj ≥ θ‖ξ‖2 for almost allx ∈ Ω and allξ ∈ R
n. (2.28)

For example in the case of Dirichlet boundary conditions

y|∂Ω = 0

the weak formulation of (2.26) is given by

Findy ∈ V := H1
0 (Ω): a(y, v) = (f, v)L2(Ω) ∀ v ∈ V

with the bilinear form

a(y, v) =

∫

Ω

n∑

i,j=1

(aij yxivxj + c0 y v) dx.

Our previous results remain true, if in the case of the Robin boundary condition the normal
derivative is replaced by the conormal derivative

∂y

∂νA
(x)

def
= ∇y(x) · A(x)ν(x), A(x) = (aij(x)), (2.29)

2.3.3 An existence and uniqueness result for semilinear elliptic equa-
tions

We finally state an existence and uniqueness result for a uniformly elliptic semilinear equa-
tion

Ly + d(x, y) = f onΩ
∂y

∂νA
+ αy + b(x, y) = g on∂Ω

(2.30)

where the operatorL is given by

Ly := −
n∑

i,j=1

(aijyxi)xj + c0y, aij, c0 ∈ L∞, c0 ≥ 0, aij = aji (2.27)
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andL is assumed to be uniformly elliptic in the sense that there isa constantθ > 0 such
that

n∑

i,j=1

aij(x)ξiξj ≥ θ‖ξ‖2 for almost allx ∈ Ω and allξ ∈ R
n. (2.28)

Moreover, we assume that0 ≤ α ∈ L∞(∂Ω) and that the functionsd : Ω × R → R, and
b : ∂Ω× R → R satisfy

d(x, ·) is continuous and monotone increasing for a.a.x ∈ Ω,

b(x, ·) is continuous and monotone increasing for a.a.x ∈ ∂Ω,

d(·, y), b(·, y) measurable for ally ∈ R.

(2.31)

Under these assumptions the theory of maximal monotone operators and a technique of
Stampacchia can be applied to extend Theorem 2.3.7 to the semilinear elliptic equation
(2.30), see for example [Tr05].

Theorem 2.3.8 Let Ω ⊂ R
n be open and bounded with Lipschitz-boundary, letc0 ∈

L∞(Ω), α ∈ L∞(∂Ω) be nonnegative with‖c0‖L2(Ω) + ‖α‖L2(∂Ω) > 0 and let (2.28),
(2.31)be satisfied. Moreover, letr > n/2, s > n− 1, 2 ≤ n ≤ 3.

If d(·, 0) = 0 andb(·, 0) = 0 then(2.30), (2.27)has for anyf ∈ Lr(Ω) andg ∈ Ls(∂Ω) a
unique weak solutiony ∈ H1(Ω) ∩ C(Ω̄). There exists a constantC∞ > 0 with

‖y‖H1(Ω) + ‖y‖C(Ω̄) ≤ C∞(‖f‖Lr(Ω) + ‖g‖Ls(∂Ω)),

whereC∞ depends onΩ, α, c0 but not onf, g, b, d.

If more generallyd(·, 0) ∈ Lr(Ω) andb(·, 0) ∈ Ls(∂Ω) then there exists a constantC∞ > 0
with

‖y‖H1(Ω) + ‖y‖C(Ω̄) ≤ C∞(‖f − d(·, 0)‖Lr(Ω) + ‖g − b(·, 0)‖Ls(∂Ω)),

whereC∞ depends onΩ, α, c0 but not onf, g, b, d.

2.4 Gâteaux- and Fŕechet Differentiability

We extend the notion of differentiability to operators between Banach spaces.

Definition 2.4.1 LetF : U ⊂ X → Y be an operator withX, Y Banach spaces andU 6= ∅
open.

a) F is calleddirectionally differentiableat x ∈ U if the limit

dF (x, h) = lim
t→0+

F (x+ th)− F (x)

t
∈ Y

exists for allh ∈ X. In this case,dF (x, h) is called directional derivative ofF in the
directionh.
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b) F is calledGâteaux differentiableat x ∈ U if F is directionally differentiable atx and
the directional derivativeF ′(x) : X ∋ h 7→ dF (x, h) ∈ Y is bounded and linear, i.e.,
F ′(x) ∈ L(X, Y ).

c) F is calledFréchet differentiableat x ∈ U if F is Gâteaux differentiable atx and if the
following approximation condition holds:

‖F (x+ h)− F (x)− F ′(x)h‖Y = o(‖h‖X) for ‖h‖X → 0.

d) If F is directionally-/G-/F-differentiable at everyx ∈ V , V ⊂ U open, thenF is called
directionally-/G-/F-differentiable onV .

Higher derivatives can be defined as follows:

If F is G-differentiable in a neighborhoodV of x, andF ′ : V → L(X, Y ) is itself
G-differentiable atx, thenF is called twice G-differentiable atx. We write F ′′(x) ∈
L(X,L(X, Y )) for the second G-derivative ofF at x. It should be clear now how thekth
derivative is defined.

In the same way, we define F-differentiability of orderk.

It is easy to see that F-differentiablity ofF at x implies continuity ofF at x. We say
thatF is k-times continuously F-differentiable ifF is k-times F-differentiable andF (k) is
continuous.

We collect a couple of facts:

a) The chain rule holds for F-differentiable operators:

H(x) = G(F (x)), F,G F-differentiable atx andF (x), respectively

=⇒ H F-differentiable atx with H ′(x) = G′(F (x))F ′(x).

Moreover, ifF is G-differentiable atx andG is F-differentiable atF (x), then H is G-
differentiable and the chain rule holds. As a consequence, also the sum rule holds for F-
and G-differentials.

b) If F is G-differentiable on a neighborhood ofx andF ′ is continuous atx thenF is
F-differentiable atx.

c) If F : X×Y → Z is F-differentiable at(x, y) thenF (·, y) andF (x, ·) are F-differentiable
atx andy, respectively. These derivatives are called partial derivatives and denoted by
F ′
x(x, y) andF ′

y(x, y), respectively. There holds (sinceF is F-differentiable)

F ′(x, y)(hx, hy) = F ′
x(x, y)hx + F ′

y(x, y)hy.

d) If F is G-differentiable in a neighborhoodV of x, then for allh ∈ X with {x+ th : 0 ≤ t ≤ 1} ⊂
V , the following holds:

‖F (x+ h)− F (x)‖Y ≤ sup
0<t<1

‖F ′(x+ th)h‖Y
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If t ∈ [0, 1] 7→ F ′(x+ th)h ∈ Y is continuous, then

F (x+ h)− F (x) =

∫ 1

0

F ′(x+ th)h dx,

where theY -valued integral is defined as a Riemann integral.

We only prove the last assertion: As a corollary of the Hahn-Banach theorem, we obtain
that for ally ∈ Y there exists ay∗ ∈ Y ∗ with ‖y∗‖Y ∗ = 1 and

‖y‖Y = 〈y∗, y〉Y ∗,Y .

Hence,

‖F (x+ h)− F (x)‖Y = max
‖y∗‖Y ∗=1

dy∗(1) with dy∗(t) = 〈y∗, F (x+ th)− F (x)〉Y ∗,Y .

By the chain rule for G-derivatives, we obtain thatd is G-differentiable in a neighborhood
of [0, 1] with

d′y∗(t) = 〈y∗, F ′(x+ th)h〉Y ∗,Y .

G-differentiability of d : (−ε, 1 + ε) → R means thatd is differentiable in the classical
sense. The mean value theorem yields

〈y∗, F (x+ h)− F (x)〉Y ∗,Y = dy∗(1) = dy∗(1)− dy∗(0) = d′y∗(τ) ≤ sup
0<t<1

d′y∗(t)

for appropriateτ ∈ (0, 1). Therefore,

‖F (x+ h)− F (x)‖Y = max
‖y∗‖Y ∗=1

dy∗(1) ≤ sup
‖y∗‖Y ∗=1

sup
0<t<1

〈y∗, F ′(x+ th)h〉Y ∗,Y

= sup
0<t<1

sup
‖y∗‖Y ∗=1

〈y∗, F ′(x+ th)h〉Y ∗,Y = sup
0<t<1

‖F ′(x+ th)h‖Y .



40



Chapter 3

Existence of optimal controls

In the introduction we have discussed several examples of optimal control problems. We
will now consider the question whether there exists an optimal solution. To this purpose,
we need a further ingredient from functional analysis, the concept of weak convergence.

3.1 Weak convergence

In infinite dimensional spaces bounded, closed sets are no longer compact. In order to obtain
compactness results, one has to use the concept of weak convergence.

Definition 3.1.1 LetX be a normed space. We say that a sequence(xk) ⊂ X converges
weaklyto x ∈ X, written

xk −⇀ x,

if
〈x∗, xk〉X∗,X → 〈x∗, x〉X∗,X ask → ∞ ∀ x∗ ∈ X∗.

It is easy to check that strong convergencexk → x implies weak convergencexk −⇀ x.
Moreover, one can show:

Theorem 3.1.2 i) Let X be a normed space and let(xk) ⊂ X be weakly convergent to
x ∈ X. Then(xk) is bounded.

ii) Let C ⊂ X be a closed convex subset of the normed spaceX. ThenC is sequentially
weakly closed, i.e., for every sequence(xk) ⊂ C with xk −⇀ x one hasx ∈ C.

Definition 3.1.3 A Banach spaceX is calledreflexiveif the mappingx ∈ X 7→ 〈·, x〉X∗,X ∈
(X∗)∗ is surjective, i.e., if for anyx∗∗ ∈ (X∗)∗ there existsx ∈ X with

〈x∗∗, x∗〉(X∗)∗,X∗ = 〈x∗, x〉X∗,X ∀ x∗ ∈ X∗.

41
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Remark: Note that for anyx ∈ X the mappingx∗∗ := 〈·, x〉X∗,X is in (X∗)∗ with
‖x∗∗‖(X∗)∗ ≤ ‖x‖X , since

|〈x∗, x〉X∗,X | ≤ ‖x∗‖X∗‖x‖X .

One can show that actually‖x∗∗‖(X∗)∗ = ‖x‖X . 2

Remark: Lp is for1 < p <∞ reflexive, since we have the isometric isomorphisms(Lp)∗ =
Lq, 1/p + 1/q = 1, and thus((Lp)∗)∗ = (Lq)∗ = Lp. Moreover, any Hilbert space is
reflexive by the Riesz representation theorem.2

The following result is important.

Theorem 3.1.4 (Weak sequential compactness)LetX be a reflexive Banach space. Then
the following holds

i) Every bounded sequence(xk) ⊂ X contains a weakly convergent subsequence, i.e.,
there are(xki) ⊂ (xk) andx ∈ X with xki −⇀ x.

ii) Every bounded, closed and convex subsetC ⊂ X is weakly sequentially compact, i.e.,
every sequence(xk) ⊂ C contains a weakly convergent subsequence(xki) ⊂ (xk)
with xki −⇀ x, wherex ∈ C.

For a proof see for example [Al99], [Yo80].

Theorem 3.1.5 (Lower semicontinuity)LetX be a Banach space. Then any continuous,
convex functionalF : X → R is weakly lower semicontinuous, i.e.

xk −⇀ x =⇒ lim inf
k→∞

F (xk) ≥ F (x).

Finally, it is valuable to have mappings that map weakly convergent sequences to strongly
convergent ones.

Definition 3.1.6 A linear operatorA : X → Y between normed spaces is calledcompact
if it maps bounded sets to relatively compact sets, i.e.,

M ⊂ X bounded =⇒ AM ⊂ Y compact.

Since compact sets are bounded (why?), compact operators are automatically bounded and
thus continuous. The connection to weak/strong convergence is as follows.

Lemma 3.1.7 LetA : X → Y be a compact operator between normed spaces. Then, for
all (xk) ⊂ X, xk −⇀ x, there holds

Axk → Ax.
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Proof: Fromxk −⇀ x andA ∈ L(X, Y ) we see thatAxk −⇀ Ax. Since(xk) is bounded
(Theorem 3.1.2), there exists a bounded setM ⊂ X with x ∈ M and(xk) ⊂ M . Now as-
sumeAxk 6→ Ax. Then there existε > 0 and a subsequence(Axk)K with ‖Axk − Ax‖Y ≥
ε for all k ∈ K. SinceAM is compact, the sequence(Axk)K possesses a convergent sub-
sequence(Axk)K′ → y. The continuity of the norm implies

‖y − Ax‖Y ≥ ε.

But since(Axk)K′ −⇀ Ax and(Axk)K′ → y we must havey = Ax, which is a contradic-
tion. 2

3.2 Existence result for a general problem

All linear-quadratic optimization problems in the introduction can be converted to a linear-
quadratic optimization problem of the form

min
(y,u)∈Y×U

f(y, u)
def
=

1

2
‖Qy − qd‖

2
H +

α

2
‖u‖2U

subject to Ay + Bu = g, u ∈ Uad, y ∈ Yad

(3.1)

whereH,U are Hilbert spaces,Y, Z are Banach spaces andqd ∈ H, g ∈ Z, Y is reflexive,
A ∈ L(Y, Z),B ∈ L(U,Z),Q ∈ L(Y,H) and the the following assumption holds.

Assumption 3.2.1

1. α ≥ 0, Uad ⊂ U is convex, closed and in the caseα = 0 bounded.

2. Yad ⊂ Y is convex and closed, such that(3.1)has a feasible point.

3. A ∈ L(Y, Z) has a bounded inverse.

Definition 3.2.2 A state-control pair(ȳ, ū) ∈ Yad×Uad is calledoptimalfor (3.1), if Aȳ+
Bū = g and

f(ȳ, ū) ≤ f(y, u) ∀ (y, u) ∈ Yad × Uad, Ay + Bu = g.

We prove first the following existence result for (3.1).

Theorem 3.2.3 Let assumption 3.2.1 hold. Then problem(3.1) has an optimal solution
(ȳ, ū). If α > 0 then the solution is unique.
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Proof: Denote the feasible set by

Wad := {(y, u) ∈ Y × U : (y, u) ∈ Yad × Uad, Ay + Bu = g} .

Sincef ≥ 0 andWad is nonempty, the infimum

f ∗ := inf
(y,u)∈Wad

f(y, u)

exists and hence we find a minimizing sequence(yk, uk) ⊂ Wad with

lim
k→∞

f(yk, uk) = f ∗.

The sequence(uk) is bounded, since by assumption eitherUad is bounded orα > 0. In the
latter case the boundedness follows from

f(yk, uk) ≥
α

2
‖uk‖

2
U .

Since,A ∈ L(Y, Z), B ∈ L(U,Z), andA−1 ∈ L(Z, Y ), this implies that also the state
sequence(yk) given byyk = A−1(g −Buk) is bounded. Hence,

(yk, uk) ⊂ Wad ∩ (B̄Y (r)× B̄U(r)) =:M

for r > 0 large enough, wherēBY (r), B̄U(r) denote the closed balls of radiusr in Y, U . By
assumptionYad×Uad is closed, convex and thus alsoWad is closed and convex. Thus, the set
M is bounded, closed and convex and consequently by Theorem 3.1.4 weakly sequentially
compact. Therefore, there exists a weakly convergent subsequence(yki , uki) ⊂ (yk, uk) and
some(ȳ, ū) ∈ Wad with (yki , uki) −⇀ (ȳ, ū) asi→ ∞. Finally, (y, u) ∈ Y ×U → f(y, u)
is obviously continuous and convex. We conclude by Theorem 3.1.5 that

f ∗ = lim
i→∞

f(yki , uki) ≥ f(ȳ, ū) ≥ f ∗,

where the last inequality follows from(ȳ, ū) ∈ Wad. Therefore,(ȳ, ū) is the optimal solu-
tion of (3.1). Ifα > 0 thenu 7→ f(A−1(g − Bu), u) is strictly convex, which contradicts
the existence of more than one minimizer.2

Remark Actually, the reflexivity ofY is not needed. In fact, we can use thatAy+Bu = g
impliesy = A−1(g − Bu) and thus the problem (3.1) is equivalent to

min
u∈U

f̂(u) s.t. u ∈ Ûad

with

f̂(u) = f(A−1(g −Bu), u), Ûad =
{
u ∈ U : u ∈ Uad, A

−1(g −Bu) ∈ Yad
}
.

It is easy to see that̂f is continuous and convex and̂Uad is closed and convex. An argumen-
tation as before shows that a minimizing sequence is boundedand thus contains a weakly
convergent subsequence convergent to someū ∈ Ûad. Lower semicontinuity implies the
optimality of ū. Settingȳ = A−1(g − Bū), we obtain a solution(ȳ, ū) of (3.1).
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3.3 Existence results for nonlinear problems

The existence result can be extended to nonlinear problems

min
(y,u)∈Y×U

f(y, u) subject to E(y, u) = 0, u ∈ Uad, y ∈ Yad, (3.2)

f : Y × U → R, E : Y × U → Z continuous,U andY reflexive Banach spaces.

Similarly as above, existence can be shown under the following assumptions.

Assumption 3.3.1

1. Uad ⊂ U is convex, bounded and closed.

2. Yad ⊂ Y is convex and closed, such that(3.2)has a feasible point.

3. The state equationE(y, u) = 0 has a continuous, bounded solution operatoru ∈
Uad 7→ y(u) ∈ Y .

4. (y, u) ∈ Y × U 7→ E(y, u) ∈ Z is continuous under weak convergence, i.e.,
(yk, uk) −⇀ (y, u) in Y × U impliesE(yk, uk) −⇀ E(y, u) in Z.

5. f is sequentially weakly lower semicontinuous.

To show 4., one uses usually compact embeddingsY ⊂⊂ Ỹ to convert weak convergence
in Y to strong convergence iñY .

Example 3.3.2 To show 4. for the semilinear state equation

y ∈ Y := H1(Ω) 7→ E(y, u) := −∆y + y3 − u ∈ Y ∗ =: Z,

one can proceed as follows. LetΩ ⊂ R
n open and bounded with Lipschitz boundary. Then

the imbeddingY := H1(Ω) ⊂⊂ L5(Ω) is compact forn = 2, 3. Therefore,yk −⇀ y weakly
in Y impliesyk → y strongly inL5(Ω) and this implies (see below)y3k → y3 strongly in
L5/3(Ω) = L5/2(Ω)∗ ⊂ Y ∗ (note thatY ⊂ L5/2(Ω)), and thus strongly inY ∗.

To provey3k → y3 in L5/3(Ω), we first observe thaty3k, y
3 ∈ L5/3(Ω) obviously holds. Next,

we prove
|b3 − a3| ≤ 3(|a|2 + |b|2)|b− a|.

In fact, for appropriatet ∈ [0, 1] we have

|b3 − a3| = 3|(a+ t(b− a))2(b− a)| ≤ 3max(|a|2, |b|2)|b− a| ≤ 3(|a|2 + |b|2)|b− a|.

Therefore,

‖y3k − y3‖L5/3 ≤ 3‖(y2k + y2)|yk − y|‖L5/3 ≤ 3‖y2k|yk − y|‖L5/3 + 3‖y2|yk − y|‖L5/3 .
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We estimate, using the Hölder inequality withp = 3/2 andq = 3,

‖v2w‖L5/3 = ‖|v|10/3|w|5/3‖
3/5

L1 ≤ ‖|v|10/3‖
3/5

L3/2‖|w|5/3‖
3/5

L3 = ‖|v|5‖
2/5

L1 ‖|w|
5‖

1/5

L1 = ‖v‖2L5‖w‖L5 .

This shows

‖y3k − y3‖L5/3 ≤ ‖y2k|yk − y|‖L5/3 + ‖y2|yk − y|‖L5/3 ≤ (‖yk‖
2
L5 + ‖y‖2L5)‖yk − y‖L5

→ 2‖y‖2L5 · 0 = 0 asyk → y in L5(Ω).

We summarize:yk −⇀ y in Y impliesyk → y in L5(Ω). From this it follows thaty3k → y3

in L5/3(Ω) which impliesy3k → y3 in Y ∗ = Z. Hence, 4. follows, since the remaining linear
operators inE(y, u) are bounded.

3.4 Applications

3.4.1 Distributed control of elliptic equations

We apply the result first to the distributed optimal control of a steady temperature distribu-
tion with boundary temperature zero.

min f(y, u)
def
=

1

2
‖y − yd‖

2
L2(Ω) +

α

2
‖u‖2L2(Ω)

subject to −∆y = γ u onΩ,

y = 0 on∂Ω,

a ≤ u ≤ b onΩ,

(3.3)

where
γ ∈ L∞(Ω) \ {0}, γ ≥ 0, a, b ∈ L2(Ω), a ≤ b.

The form off and the assumptions ona, b suggest the choiceU = L2(Ω) and

Uad = {u ∈ U : a ≤ u ≤ b} .

ThenUad ⊂ U is bounded, closed and convex.

We know from Theorem 2.3.4 that the weak formulation of the boundary value problem

−∆y = γ u onΩ,

y = 0 on∂Ω,

can be written in the form

Find y ∈ Y := H1
0 (Ω) : a(y, v) = (γu, v)L2(Ω) ∀ v ∈ Y.
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with a(y, v) =
∫

Ω
∇y · ∇v dx, or short

Ay + Bu = 0,

whereA ∈ L(Y, Y ∗), is the operator representinga, see (2.17), andB ∈ L(U, Y ∗) is
defined throughBu = −(γu, ·)L2(Ω). By Theorem 2.3.4,A ∈ L(Y, Y ∗) has a bounded
inverse. Therefore, Assumption 3.2.1 is satisfied with the choiceZ = Y ∗. Finally, setting
g = 0 andQ = IY,U with the trivial, continuous imbeddingIY,U : y ∈ Y → y ∈ U , (3.3) is
equivalent to (3.1).
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Chapter 4

Reduced Problem, Sensitivities and
Adjoints

We consider again optimal control problems of the form

min
y∈Y,u∈U

f(y, u) subject to E(y, u) = 0, (y, u) ∈ Wad, (4.1)

wheref : Y × U → R is the objective function,E : Y × U → Z is an operator between
Banach spaces, andWad ⊂ W := Y × Z is a nonempty closed set.

We assume thatf andE are continuously F-differentiable and that the state equation

E(y, u) = 0

possesses for each (“reasonable”)u ∈ U a unique corresponding solutiony(u) ∈ Y .
Thus, we have a solution operatoru ∈ U 7→ y(u) ∈ Y . Furthermore, we assume that
E ′
y(y(u), u) ∈ L(Y, Z) is continuously invertible. Then the implicit function theorem en-

sures thaty(u) is continuously differentiable. An equation for the derivative y′(u) is ob-
tained by differentiating the equationE(y(u), u) = 0 with respect tou:

E ′
y(y(u), u)y

′(u) + E ′
u(y(u), u) = 0.

Insertingy(u) in (4.1), we obtain the reduced problem

min
u∈U

f̂(u)
def
= f(y(u), u) subject to u ∈ Ûad

def
= {u ∈ U : (y(u), u) ∈ Wad} . (4.2)

It will be important to investigate the possibilities of computing the derivative of the reduced
objective functionf̂ .

Essentially, there are two methods to do this:

• The sensitivity approach,

• The adjoint approach.

49
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4.1 Sensitivity approach

Sensitivities are directional derivatives. Foru ∈ U and a directions ∈ U , the chain rule
yields for the sensitivity of̂f :

df̂(u, s) = 〈f̂ ′(u), s〉U∗,U = 〈f ′
y(y(u), u), y

′(u)s〉Y ∗,Y + 〈f ′
u(y(u), u), s〉U∗,U .

In this expression, the sensitivitydy(u, s) = y′(u)s appears. DifferentiatingE(y(u), u) = 0
in the directions yields

E ′
y(y(u), u)y

′(u)s+ E ′
u(y(u), u)s = 0.

Hence, the sensitivityδsy = dy(u, s) is given as the solution of the linearized state equation

E ′
y(y(u), u)δsy = −E ′

u(y(u), u)s.

Therefore, to compute the directional derivativedf̂(u, s) = 〈f̂(u), s〉U∗,U via the sensitivity
approach, the following steps are required:

1. Compute the sensitivityδsy = dy(u, s) by solving

E ′
y(y(u), u)δsy = −E ′

u(y(u), u)s. (4.3)

2. Computedf̂(u, s) = 〈f̂ ′(u), s〉U∗,U via

df̂(u, s) = 〈f ′
y(y(u), u), δsy〉Y ∗,Y + 〈f ′

u(y(u), u), s〉U∗,U .

This procedure is expensive if the whole derivativef̂ ′(u) is required, since this means that
for a basisB of U , all the directional derivatives

df̂(u, b), b ∈ B,

have to be computed. Each of them requires the solution of onelinearized state equation
(4.3) withs = b.

This is an effort that grows linearly in the dimension ofU .

Actually, computing all sensitivities ofδby = y′(u)b, b ∈ B, is equivalent to computing
the whole operatory′(u). As we will see now, the derivative of̂f can be computed much
cheaper by solving a single adjoint equation.

4.2 Adjoint approach

We now derive a more efficient way of representing the derivative of f̂ . Consider (4.1) and
define the Lagrange functionL : Y × U × Z∗ → R,

L(y, u, p) = f(y, u) + 〈p, E(y, u)〉Z∗,Z .
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Insertingy = y(u) gives, for arbitraryp ∈ Z∗,

f̂(u) = f(y(u), u) = f(y(u), u) + 〈p, E(y(u), u)〉Z∗,Z = L(y(u), u, p).

Differentaiting this, we obtain

〈f̂ ′(u), s〉U∗,U = 〈L′
y(y(u), u, p), y

′(u)s〉Y ∗,Y + 〈L′
u(y(u), u, p), s〉U∗,U . (4.4)

Now we choose a specialp = p(u) ∈ Z∗, namely such that theadjoint equationholds

L′
y(y(u), u, p) = 0. (4.5)

To write the adjoint equation in a concrete form, we note thatfor all d ∈ Y

〈L′
y(y, u, p), d〉Y ∗,Y = 〈f ′

y(y, u), d〉Y ∗,Y+〈p, E ′
y(y, u)d〉Z∗,Z = 〈f ′

y(y, u)+E
′
y(y, u)

∗p, d〉Y ∗,Y .

Therefore,

L′
y(y(u), u, p) = f ′

y(y(u), u) + E ′
y(y(u), u)

∗p = f ′
y(y(u), u) + 〈p, E ′

y(y(u), u) ·〉Y ∗,Y

and the adjoint equation (4.5) reads

Adjoint Equation:
E ′
y(y(u), u)

∗p = −f ′
y(y(u), u). (4.6)

Completely analogous we obtain

L′
u(y(u), u, p) = f ′

u(y(u), u) + E ′
u(y(u), u)

∗p = f ′
u(y(u), u) + 〈p, E ′

u(y(u), u) ·〉Z∗,Z .

Now, choosing theadjoint statep = p(u) ∈ Z∗ according to the adjoint equation (4.6), we
obtain from (4.4) that

f̂ ′(u) = E ′
u(y(u), u)

∗p(u) + f ′
u(y(u), u).

The derivativef̂ ′(u) can thus be computed via the adjoint approach as follows:

1. Compute the adjoint state by solving the adjoint equation

E ′
y(y(u), u)

∗p = −f ′
y(y(u), u).

2 Computef̂ ′(u) via

f̂ ′(u) = E ′
u(y(u), u)

∗p+ f ′
u(y(u), u) = f ′

u(y(u), u) + 〈p, E ′
u(y(u), u) ·〉Z∗,Z .
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4.3 Application to a linear-quadratic optimal control prob-
lem

We consider the linear-quadratic optimal control problem

min
(y,u)∈Y×U

f(y, u)
def
=

1

2
‖Qy − qd‖

2
H +

α

2
‖u‖2U

subject to Ay + Bu = g, u ∈ Uad, y ∈ Yad

(4.7)

whereH,U are Hilbert spaces,Y, Z are Banach spaces andqd ∈ H, g ∈ Z, A ∈ L(Y, Z),
B ∈ L(U,Z),Q ∈ L(Y,H). Moreover, let Assumption 3.2.1 hold.

E(y, u) = Ay + Bu− g,Wad = Yad × Uad.

By assumption, there exists a continuous affine linear solution operator

U ∋ u 7→ y(u) = A−1(g −Bu) ∈ Y.

For the derivatives we have

〈f ′
y(y, u), sy〉Y ∗,Y = (Qy − qd, Qsy)H ,= 〈Q∗(Qy − qd), sy〉Y ∗,Y

〈f ′
u(y, u), su〉U∗,U = α(u, su)U ,

E ′
y(y, u)sy = Asy,

E ′
u(y, u)sy = Bsu,

Therefore,

f ′
y(y, u) = (Qy − qd, Q·)H

f ′
u(y, u) = α(u, ·)U ,

E ′
y(y, u) = A,

E ′
u(y, u) = B.

If we choose the Riesz representationsU∗ = U ,H∗ = H, then

f ′
y(y, u) = (Qy − qd, Q·)H = 〈Qy − qd, Q·〉H∗,H = 〈Q∗(Qy − qd), ·〉Y ∗,Y = Q∗(Qy − qd),

f ′
u(y, u) = α(u, ·)U = αu.

The reduced objective function is

f̂(u) = f(y(u), u) =
1

2
‖Q(A−1(g −Bu))− qd‖

2

H +
α

2
‖u‖2U .
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For evaluation off̂ , we first solve the state equation

Ay + Bu = g

to obtainy = y(u) and then we evaluatef(y, u). In the following, lety = y(u).

Sensitivity Approach:

Fors ∈ U , we obtaindf̂(u, s) = 〈f̂ ′(u), s〉U∗,U by first solving the linearized state equation

Aδsy = −Bs

for δsy and then setting

df̂(u, s) = ((Qy − qd), Qδsy)H + α(u, s)U .

Adjoint Approach:

We obtainf̂ ′(u) by first solving the adjoint equation

A∗p = −((Qy − qd), Q·)H (= −Q∗(Qy − qd) if H∗ = H)

for the adjoint statep = p(u) ∈ Z∗ and then setting

f̂ ′(u) = B∗p+ α(u, ·)U (= B∗p+ αu if U∗ = U).

4.3.1 Application to distributed control of an elliptic equation

Next, let us consider the concrete example of the elliptic control problem

min f(y, u)
def
=

1

2

∫

Ω

(y(x)− yd(x))
2 dx+

α

2

∫

Ω

u(x)2 dx

subject to −∆y = γ u onΩ,
∂y

∂ν
=
β

κ
(ya − y) on∂Ω,

l ≤ u ≤ r onΩ.

The appropriate spaces are

U = L2(Ω), Y = H1(Ω)

and we assume

l, r ∈ U, l ≤ r, yd ∈ L2(Ω), α > 0, ya ∈ L2(∂Ω), γ ∈ L∞(Ω) \ {0}, γ ≥ 0.

The coefficientγ weights the control andya can be interpreted as the surrounding tempera-
ture in the case of the heat equation.β > 0 andκ > 0 are coefficients.
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The weak formulation of the state equation is

y ∈ Y, a(y, v) = (γu, v)L2(Ω) + ((β/κ)ya, v)L2(∂Ω) ∀ v ∈ Y = H1(Ω) (4.8)

with

a(y, v) =

∫

Ω

∇yT∇v dx+ ((β/κ)y, v)L2(∂Ω).

By the existence and uniqueness result of Theorem 2.3.6a induces an operatorA ∈ L(Y, Y ∗),
which has a bounded inverse.

Hence, we setZ = Y ∗,H = L2(Ω) and

• A ∈ L(Y, Y ∗) the operator induced bya, i.e.,Ay = a(y, ·),

• B ∈ L(U, Y ∗),Bu = −(γu, ·)L2(Ω),

• g ∈ Y ∗, g = ((β/κ)ya, ·)L2(∂Ω),

• Uad = {u ∈ U : a ≤ u ≤ b onΩ},

• Q ∈ L(Y,H),Qy = y.

Then, we arrive at a linear quadratic problem of the form (4.7) that satisfies Assumption
3.2.1.

Adjoint approach

Variant 1: Determine the adjoint operators

We compute the adjoints. Note that all spaces are Hilbert spaces and thus reflexive. In
particular, we identify the dual ofU = L2 with U by working with〈·, ·〉U∗,U = (·, ·)L2(Ω).
We do the same withH = L2. We thus have

A∗ ∈ L(Z∗, Y ∗) = L(Y ∗∗, Y ∗) = L(Y, Y ∗),

B∗ ∈ L(Z∗, U∗) = L(Y ∗∗, U) = L(Y, U),

Q∗ ∈ L(H∗, Y ∗) = L(H, Y ∗).

ForA∗ we obtain

〈A∗v, w〉Y ∗,Y = 〈v, Aw〉Z∗,Z = 〈Aw, v〉Y ∗,Y = a(w, v) = a(v, w) = 〈Av,w〉Y ∗,Y ∀ v, w ∈ Y.

Here, we have used that obviuouslya is a symmetric bilinear form. Therefore,A∗ = A.

ForB∗ we have

(B∗v, w)U = 〈B∗v, w〉U∗,U = 〈v,Bw〉Z∗,Z = 〈v,Bw〉Y,Y ∗ = (v,−γw)L2

= −(γv, w)U ∀ v ∈ Y, w ∈ U.
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HenceB∗v = −γv.

Now, sinceQy = y, we have This means that

f ′
y(y, u) = (Qy − yd, Q·)L2(Ω) = (y − yd, ·)L2(Ω).

Moreover,
f ′
u(y, u) = α(u, ·)L2(Ω) = αu.

Taking all together, the adjoint equation thus reads

Ap = −(y − yd, ·)L2(Ω),

which is the weak form of

−∆p = −(y − yd) onΩ,
∂p

∂ν
+
β

κ
p = 0 on∂Ω,

The adjoint gradient representation then is

f̂ ′(u) = B∗p(u) + f ′
u(y(u), u) = −γp+ αu.

Variant 2: Work directly with the Lagrangian

If the PDE constraint is given in weak form, it is often more convenient to work directly
with the Lagrangian.

The operatorE : Y × U 7→ Z = Y ∗ is given by the weak formulation (4.8), i.e., for all
p ∈ Z∗ = Y we have

〈p, E(y, u)〉Z∗,Z = a(y, p)− (γu, p)L2(Ω) − ((β/κ)ya, p)L2(∂Ω).

Hence, the Lagrangian has the form

L(y, u, p) =
1

2
‖y − yd‖

2
L2(Ω) +

α

2
‖u‖2L2(Ω)a(y, p)− (γu, p)L2(Ω) − ((β/κ)ya, p)L2(∂Ω).

The adjoint equation is now

L′
y(y(u), u, p) = 0 ⇐⇒ 〈L′

y(y(u), u, p), v〉Y ∗,Y = 0 ∀ v ∈ Y.

Inserting the Lagrangian, the adjoint equation reads

(y − yd, v)L2(Ω) + a(v, p) = 0 ∀ v ∈ Y.

This is exactly the same adjoint equation as in Variant 1 (note thata(v, p) = a(p, v). The
reduced derivative is now given by

f̂ ′(u) = L′
u(y(u), u, p) = α(u, ·)L2(Ω) − (γp, ·)L2(Ω) = (αu− γp, ·)L2(Ω) = αu− γp,

where we have used the identificationU = U∗ in the last equality.
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4.4 Second derivatives

We can use the Lagrange function based approach to derive thesecond derivative of̂f .

To this end, assume thatf andE are twice continuously differentiable. As already noted,
for all p ∈ Z∗ we have the identity

f̂(u) = f(y(u), u) = L(y(u), u, p).

Differentiating this in the directions1 ∈ U yields (see above)

〈f̂ ′(u), s1〉U∗,U = 〈L′
y(y(u), u, p), y

′(u)s1〉Y ∗,Y + 〈L′
u(y(u), u, p), s1〉U∗,U .

Differentiating this once again in the directions2 ∈ U gives

〈f̂ ′′(u)s2, s1〉U∗,U = 〈L′
y(y(u), u, p), y

′′(u)(s1, s2)〉Y ∗,Y

+ 〈L′′
yy(y(u), u, p)y

′(u)s2, y
′(u)s1〉Y ∗,Y

+ 〈L′′
yu(y(u), u, p)s2, y

′(u)s1〉Y ∗,Y

+ 〈L′′
uy(y(u), u, p)y

′(u)s2, s1〉U∗,U

+ 〈L′
uu(y(u), u, p)s2, s1〉U∗,U .

Now we choosep = p(u), i.e.,L′
y(y(u), u, p(u)) = 0. Then the term containingy′′(u) drops

out and we arrive at

〈f̂ ′′(u)s2, s1〉U∗,U = 〈L′′
yy(y(u), u, p(u))y

′(u)s2, y
′(u)s1〉Y ∗,Y

+ 〈L′′
yu(y(u), u, p(u))s2, y

′(u)s1〉Y ∗,Y

+ 〈L′′
uy(y(u), u, p(u))y

′(u)s2, s1〉U∗,U

+ 〈L′
uu(y(u), u, p(u))s2, s1〉U∗,U .

This shows

f̂ ′′(u) = y′(u)∗L′′
yy(y(u), u, p(u))y

′(u) + y′(u)∗L′′
yu(y(u), u, p(u))

+ L′′
uy(y(u), u, p(u))y

′(u) + L′′
uu(y(u), u, p(u)) (4.9)

= T (u)∗L′′
ww(y(u), u, p(u))T (u)

with

T (u) =

(
y′(u)

IU

)

∈ L(U, Y × U), L′′
ww =

(
L′′
yy L′′

yu

L′′
uy L′′

uu

)

.

HereIU ∈ L(U,U) is the identity.

Note thaty′(u) = −E ′
y(y(u), u)

−1E ′
u(y(u), u) and thus

T (u) =

(
y′(u)

IU

)

=

(
−E ′

y(y(u), u)
−1E ′

u(y(u), u)

IU

)

. (4.10)

Usually, the Hessian representation (4.9) is not used to compute the whole operator̂f ′′(u).
Rather, it is used to compute operator-vector-productsf̂ ′′(u)s as follows:
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1. Compute the sensitivity

δsy = y′(u)s = −E ′
y(y(u), u)

−1E ′
u(y(u), u)s.

This requires one linearized state equation solve.

2. Compute
(
h1
h2

)

=

(
L′′
yy(y(u), u, p(u))δsy + L′′

yu(y(u), u, p(u))s

L′′
uy(y(u), u, p(u))δsy + L′′

uu(y(u), u, p(u))s

)

.

3. Compute
h3 = y′(u)∗h1 = −E ′

u(y(u), u)
∗E ′

y(y(u), u)
−∗h1.

This requires and adjoint equation solve.

4. Setf̂ ′′(u)s = h2 + h3.

This procedure can be used to apply iterative solvers to the Newton equation

f̂ ′′(uk)sk = −f̂ ′(uk).

Example:

For the linear-quadratic optimal control problem (4.7) withU∗ = U andH∗ = H we have

L(y, u, p) = f(y, u) + 〈p,Ay + Bu〉Z∗,Z ,

L′
y(y, u, p) = Q∗(Qy − qd) + A∗p,

L′
u(y, u, p) = αu+ B∗p,

L′′
yy(y, u, p) = Q∗Q,

L′′
yu(y, u, p) = 0,

L′′
yu(u, y, p) = 0,

L′′
uu(y, u, p) = αIU .

From this, all the steps in the above algorithm can be derivedeasily.
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Chapter 5

Optimality conditions

5.1 Optimality conditions for simply constrained problems

We consider the problem
min
w∈W

f(w) s.t. w ∈ S, (5.1)

whereW is a Banach space,f : W → R is Gâteaux-differentiable andS ⊂ W is nonempty,
closed, and convex.

Theorem 5.1.1 LetW be a Banach space andS ⊂ W be nonempty and convex. Further-
more, letf : V → R be defined on an open neighborhood ofS. Letw̄ be a local solution of
(5.1)at whichf is Gâteaux-differentiable. Then the following optimality condition holds:

w̄ ∈ S, 〈f ′(w̄), w − w̄〉W ∗,W ≥ 0 ∀ w ∈ S. (5.2)

If f is convex onS, the condition(5.2) is necessary and sufficient for global optimality.

If, in addition,f is strictly convex onS, then there exists at most one solution of(5.1), or,
equivalently, of(5.2).

If W is reflexive,S is closed and convex, andf is convex and continuous with

lim
w∈S,‖w‖W→∞

f(w) = ∞,

then there exists a (global= local) solution of(5.1).

Remark: A condition of the form (5.2) is called variational inequality.

Proof: Letw ∈ S be arbitrary. By the convexity ofS we havew(t) = w̄ + t(w − w̄) ∈ S
for all t ∈ [0, 1]. Now the optimality ofw̄ yields

f(w̄ + t(w − w̄))− f(w̄) ≥ 0 ∀ t ∈ [0, 1]
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and thus

〈f ′(w̄), w − w̄〉W ∗,W = lim
t→0+

f(w̄ + t(w − w̄))− f(w̄)

t
≥ 0.

Sincew ∈ S was arbitrary, the proof is complete.

Now letf be convex. Then

f(w)− f(w̄) ≥ 〈f ′(w̄), w − w̄〉W ∗,W ∀ w ∈ S. (5.3)

In fact, for all t ∈ (0, 1],

f(w̄ + t(w − w̄)) ≤ (1− t)f(w̄) + tf(w).

Hence,

f(w)− f(w̄) =
(1− t)f(w̄) + tf(w)− f(w̄)

t
≥
f(w̄ + t(w − w̄))− f(w̄)

t

t→0+
−→ 〈f ′(w̄), w − w̄〉W ∗,W .

Now from (5.2) and (5.3) it follows that

f(w)− f(w̄) ≥ 〈f ′(w̄), w − w̄〉W ∗,W ≥ 0 ∀ w ∈ S.

Thus,w̄ is optimal.

If f is strictly convex and̄w1, w̄2 are two global solutions, the point(w̄1+w̄2)/2 ∈ S would
be a better solution, unless̄w1 = w̄2.

Now let the assumptions of the last assertion hold and let(wk) ∈ S be a minimizing se-
quence. Then(wk) is bounded (otherwisef(wk) → ∞) and thus(wk) contains a weakly
convergent subsequence(wk)K −⇀ w̄. SinceS is convex and closed, it is weakly closed
and thusw̄ ∈ S. From the continuity and convexity off we conclude thatf is weakly
sequentially lower semicontinuous and thus

f(w̄) ≤ lim
K∋k→∞

f(wk) = inf
w∈S

f(w).

Thus,w̄ solves the minimization problem.2

In the case of a closed convex setS in a Hilbert spaceW , we can rewrite the variational
inequality in the form

w̄ − P (w̄ − γ∇f(w)) = 0

whereγ > 0 is a fixed parameter and∇f(w) ∈ W is the Riesz representation off ′(w) ∈
W ∗.

To prove this, we need some knowledge about the projection onto closed convex sets.

Lemma 5.1.2 LetS ⊂ W be a nonempty closed convex subset of the Hilbert spaceW and
denote byP : W → S the projection ontoS, i.e.,

P (w) ∈ S, ‖P (w)− w‖W = min
v∈S

‖v − w‖W ∀ w ∈ W.

Then:
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a) P is well-defined.

b) For all w, z ∈ W there holds:

z = P (w) ⇐⇒

z ∈ S, (w − z, v − z)W ≤ 0 ∀ v ∈ S.

c) P is nonexpansive, i.e.,

‖P (v)− P (w)‖W ≤ ‖v − w‖W ∀ v, w ∈ W.

d) P is monotone, i.e.,

(P (v)− P (w), v − w)W ≥ 0 ∀ v, w ∈ W.

Furthermore, equality holds if and only ifP (v) = P (w).

e) For all w ∈ S andd ∈ W , the function

φ(t)
def
=

1

t
‖P (w + td)− w‖W , t > 0,

is nonincreasing.

Proof: a):

The functionW ∋ w 7→ ‖w‖2W is strictly convex: For allw1, w2 ∈ W , w1 6= w2, and all
t ∈ (0, 1);

‖w1 + t(w2 − w1)‖
2
W = ‖w1‖

2
W + 2t(w1, w2 − w1)W + t2‖w2 − w1‖

2
W =: p(t).

The function on the right is a strictly convex parabola. Hence,

‖w1 + t(w2 − w1)‖
2
W = p(t) < (1− t)p(0) + tp(1) = (1− t)‖w1‖

2
2 + t‖w2‖

2
2.

Therefore, for allw ∈ W , the function

f(v) =
1

2
‖v − w‖2W

is strictly convex. Furthermore, it tends to∞ as‖v‖W → ∞. Hence, by Theorem 5.1.1, the
problem

min
v∈S

f(v)

possesses a unique solutionv̄, and thusP (w) = v̄ is uniquely defined.

b):
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The functionf defined above is obviously F-differentiable with

〈f ′(v), s〉W ∗,W = (v − w, s)W ∀ s ∈ W.

SinceP (w) = v̄ minimizesf onS, we have by Theorem 5.1.1 thatz = P (w) if and only
if z ∈ S and

z ∈ S, 〈f ′(z), v − z〉W ∗,W = (z − w, v − z)W ≥ 0 ∀ v ∈ S.

c):

We use b):

(v − P (v), P (w)− P (v))W ≤ 0,

(w − P (w), P (v)− P (w))W ≤ 0.

Adding these two inequalities gives

(w−v+P (v)−P (w), P (v)−P (w)) = (w−v, P (v)−P (w))W +‖P (v)− P (w)‖2W ≤ 0.

Hence, by the Cauchy-Schwarz inequality

‖P (v)− P (w)‖2W ≤ (v − w,P (v)− P (w))W ≤ ‖v − w‖W‖P (v)− P (w)‖W . (5.4)

d):

The assertion follows immediately from the first inequalityin (5.4).

e):

We follow [CM87]. Let t > s > 0. If ‖P (w + td)− w‖W ≤ ‖P (w + sd)− w‖W then
obviouslyφ(s) > φ(t).

Now let‖P (w + td)− w‖W > ‖P (w + sd)− w‖W .

Using the Cauchy-Schwarz inequality, for anyu, v ∈ W we have

‖v‖W (u, u− v)W − ‖u‖W (v, u− v)W

= ‖v‖W‖u‖2W − ‖v‖W (u, v)W − ‖u‖W (v, u)W + ‖u‖W‖v‖2W

≥ ‖v‖W‖u‖2W − ‖v‖W‖u‖W‖v‖W − ‖u‖W‖v‖W‖u‖W + ‖u‖W‖v‖2W = 0.

Now, setu := P (w + td)− w, v := P (w + sd)− w, andwτ = w + τd. Then

(u, u− v)W − (td, P (wt)− P (ws))W = (P (wt)− w − td, P (wt)− P (ws))W

= (P (wt)− wt, P (wt)− P (ws))W ≤ 0,

(v, u− v)W − (sd, P (wt)− P (ws))W = (P (ws)− w − sd, P (wt)− P (ws))W

= (P (ws)− ws, P (wt)− P (ws))W ≥ 0.
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Thus,

0 ≤ ‖v‖W (u, u− v)W − ‖u‖W (v, u− v)W

≤ ‖v‖W (td, P (wt)− P (ws))W − ‖u‖W (sd, P (wt)− P (ws))W

= (t‖v‖W − s‖u‖W )(d, P (wt)− P (ws))W .

Now, due to the monotonicity ofP ,

(d, P (wt)− P (ws))W =
1

t− s
(wt − ws, P (wt)− P (ws))W > 0,

sinceP (wt) 6= P (ws). Therefore,

0 ≤ t‖v‖W − s‖u‖W = ts(φ(s)− φ(t)).

2

Lemma 5.1.3 LetW be a Hilbert space,S ⊂ W be nonempty, closed, and convex. Fur-
thermore, letP denote the projection ontoS. Then, for ally ∈ W and all γ > 0, the
following conditions are equivalent:

w ∈ S, (y, v − w)W ≥ 0 ∀ v ∈ S. (5.5)

w − P (w − γy) = 0. (5.6)

Proof: Let (5.5) hold. Then withwγ = w − γy we have

(wγ − w, v − w)W = −γ(y, v − w)W ≤ 0 ∀ v ∈ S.

By Lemma 5.1.2 b), this impliesw = P (wγ) as asserted in (5.6).

Conversely, let (5.6) hold. Then with the same notation as above we obtainw = P (wγ) ∈ S.
Furthermore, Lemma 5.1.2 b) yields

(y, v − w)W = −
1

γ
(wγ − w, v − w) ≥ 0 ∀ v ∈ S.

2

Corollary 5.1.4 LetW be a Hilbert space andS ⊂ W be nonempty, closed, and convex.
Furthermore, letf : V → R be defined on an open neighborhood ofS. Letw̄ be a local so-
lution of (5.1)at whichf is Gâteaux-differentiable. Then the following optimality condition
holds:

w̄ = P (w̄ − γ∇f(w̄)) (5.7)

Here,γ > 0 is arbitrary but fixed and∇f(w) ∈ W denotes the Riesz-representation of
f ′(w) ∈ W ∗.
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5.2 Optimality conditions for control-constrained problems

We consider a general possibly nonlinear problem of the form

min
(y,u)∈Y×U

f(y, u) subject to E(y, u) = 0, u ∈ Uad. (5.8)

We make the

Assumption 5.2.1

1. Uad ⊂ U is nonempty and convex.

2. f : Y × U → RandE : Y × U → Z are continuously Fŕechet differentiable andU ,
Y , Z are Banach spaces.

3. For all u ∈ V in a neighborhoodV ⊂ U of Uad, the state equationE(y, u) = 0 has
a unique solutiony = y(u) ∈ Y .

4. E ′
y(y(u), u) ∈ L(Y, Z) has a bounded inverse for allu ∈ Uad.

Obviously, the general linear-quadratic optimization problem

min
(y,u)∈Y×U

f(y, u)
def
=

1

2
‖Qy − qd‖

2
H +

α

2
‖u‖2U

subject to Ay + Bu = g, u ∈ Uad,

(5.9)

is a special case of (5.8), whereH,U are Hilbert spaces,Y, Z are Banach spaces andqd ∈
H, g ∈ Z,A ∈ L(Y, Z),B ∈ L(U,Z),Q ∈ L(Y,H). Moreover, Assumption 3.2.1 ensures
Assumption 5.2.1, sinceE ′

y(y, u) = A.

5.2.1 A general first order optimality condition

Now consider problem (5.8) and let Assumption 5.2.1 hold. Then we can formulate the
reduced problem

min
u∈U

f̂(u) s.t. u ∈ Uad (5.10)

with the reduced objective functional

f̂(u) := f(y(u), u),

whereV ∋ u 7→ y(u) ∈ Y is the solution operator of the state equation. We have the
following general result.
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Theorem 5.2.2 Let Assumption 5.2.1 hold. If̄u is a local solution of the reduced problem
(5.10)thenū ∈ Uad andū satisfies the variational inequality

〈f̂ ′(ū), u− ū〉U∗,U ≥ 0 ∀ u ∈ Uad. (5.11)

Proof: We can directly apply Theorem 5.1.1.2

Depending on the structure ofUad the variational inequality (5.11) can be expressed in a
more convenient form. We show this for the case of box constraints.

Lemma 5.2.3 LetU = L2(Ω), a, b ∈ L2(Ω), a ≤ b, andUad be given by

Uad =
{
u ∈ L2(Ω) : a ≤ u ≤ b

}

We work withU∗ = U write ∇f̂(u) for the derivative to emphasize that this is the Riesz
representation. Then the following conditions are equivalent:

i) ū ∈ Uad, (∇f̂(ū), u− ū)U ≥ 0 ∀ u ∈ Uad.

ii) ū ∈ Uad, ∇f̂(ū)(x)







= 0, if a(x) < ū(x) < b(x),

≥ 0, if a(x) = ū(x) < b(x),

≤ 0, if a(x) < ū(x) = b(x),

for a.a.x ∈ Ω.

iii) There arez̄a, z̄b ∈ U∗ = L2(Ω) with

∇f̂(ū) + z̄b − z̄a = 0,

ū ≥ a, z̄a ≥ 0, z̄a (ū− a) = 0,

ū ≤ b, z̄b ≥ 0, z̄b (b− ū) = 0.

iv) For anyγ > 0: ū = PUad
(ū− γ∇f̂(ū)), with PUad

(u) = min(max(a, u), b).

Proof: ii) =⇒ i): If ∇f̂(ū) satisfies ii) then it is obvious that∇f̂(ū) (u − ū) ≥ 0 a.e. for
all u ∈ Uad and thus

(∇f̂(ū), u− ū)U =

∫

Ω

∇f̂(ū)(u− ū) dx ≥ 0 ∀ u ∈ Uad.

i) =⇒ ii): Clearly, ii) is the same as

∇f̂(ū)(x)

{

≥ 0 a.e. onIa = {x : a(x) ≤ ū(x) < b(x)}

≤ 0 a.e. onIb = {x : a(x) < ū(x) ≤ b(x)}

Assume this is not true. Then, without loss of generality, there exists a setM ⊂ Ia of
positive measure with∇f̂(ū)(x) < 0 on M . Now chooseu = ū + 1M (b − ū). Then
u ∈ Uad, u− ū > 0 onM andu− ū = 0 elsewhere. Hence, we get the contradiction

(∇f̂(ū), u− ū)U =

∫

M

∇f̂(ū)
︸ ︷︷ ︸

<0

(b− ū)
︸ ︷︷ ︸

>0

dx < 0.
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ii) =⇒ iii): Let z̄a = max(∇f̂(ū), 0), z̄b = max(−∇f̂(ū), 0). Thena ≤ ū ≤ b and
z̄a, z̄b ≥ 0 hold trivially. Furthermore,

ū(x) > a(x) =⇒ ∇f̂(ū)(x) ≤ 0 =⇒ z̄a(x) = 0,

ū(x) < b(x) =⇒ ∇f̂(ū)(x) ≥ 0 =⇒ z̄b(x) = 0.

iii) =⇒ ii):

a(x) < ū(x) < b(x) =⇒ z̄a = z̄b = 0 =⇒ ∇f̂(ū) = 0,

a(x) = ū(x) < b(x) =⇒ z̄b = 0 =⇒ ∇f̂(ū) = z̄a ≥ 0,

a(x) < ū(x) = b(x) =⇒ z̄a = 0 =⇒ ∇f̂(ū) = −z̄b ≤ 0.

ii) ⇐⇒ iv): This is easily verified.

Alternatively, we can use Lemma 5.1.3 to prove the equivalence of i) and iv).2

5.2.2 Necessary first order optimality conditions

Next, we use the adjoint representation of the derivative

f̂ ′(u) = E ′
u(y(u), u)

∗p(u) + f ′
u(y(u), u), (5.12)

where the adjoint statep(u) ∈ Z∗ solves the adjoint equation

E ′
y(y(u), u)

∗p = −f ′
y(y(u), u). (5.13)

For compact notation, we recall the definition of the Lagrange function associated with
(5.8)

L : Y × U × Z∗ → R, L(y, u, p) = f(y, u) + 〈p, E(y, u)〉Z∗,Z .

The representation (5.12) of̂f ′(ū) yields the following corollary of Theorem 5.2.2.

Corollary 5.2.4 Let (ȳ, ū) an optimal solution of the problem(5.8) and let Assumption
5.2.1 hold. Then there exists an adjoint state (or Lagrange multiplier) p̄ ∈ Z∗ such that the
following optimality conditions hold

E(ȳ, ū) = 0, (5.14)

E ′
y(ȳ, ū)

∗p̄ = −f ′
y(ȳ, ū), (5.15)

ū ∈ Uad, 〈f ′
u(ȳ, ū) + E ′

u(ȳ, ū)
∗p̄, u− ū〉U∗,U ≥ 0 ∀ u ∈ Uad, (5.16)

(5.17)

Using the Lagrange function we can write(5.14)–(5.16)in the compact form

L′
p(ȳ, ū, p̄) = E(ȳ, ū) = 0, (5.14)

L′
y(ȳ, ū, p̄) = 0, (5.15)

ū ∈ Uad, 〈L′
u(ȳ, ū, p̄), u− ū〉U∗,U ≥ 0 ∀ u ∈ Uad. (5.16)
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Proof: We have only to combine (5.11), (5.13), and (5.12).2

To avoid dual operators, one can also use the equivalent form

E(ȳ, ū) = 0, (5.18)

〈L′
y(ȳ, ū, p̄), v〉Y ∗,Y = 0 ∀ v ∈ Y (5.19)

ū ∈ Uad, 〈L′
u(ȳ, ū, p̄), u− ū〉U∗,U ≥ 0 ∀ u ∈ Uad. (5.20)

5.2.3 Applications

General linear-quadratic problem

We apply the result to the linear-quadratic problem

min
(y,u)∈Y×U

f(y, u) :=
1

2
‖Qy − qd‖

2
H +

α

2
‖u‖2U

subject to Ay + Bu = g, u ∈ Uad

(5.21)

under Assumption 3.2.1. Then

E(y, u) = Ay + Bu− g, E ′
y(y, u) = A, E ′

u(y, u) = B

and Corollary 5.2.4 is applicable. We only have to computeL′
y andL′

u for the Lagrange
function

L(y, u, p) = f(y, u) + 〈p,Ay + Bu− g〉Z∗,Z

=
1

2
(Qy − qd, Qy − qd)H +

α

2
(u, u)U + 〈p,Ay + Bu− q〉Z∗,Z .

We have with the identificationH∗ = H andU∗ = U

〈L′
y(ȳ, ū, p̄), v〉Y ∗,Y = (Qȳ − qd, Qv)H + 〈p̄, Av〉Z∗,Z

= 〈Q∗(Qȳ − qd) + A∗p̄, v〉Y ∗,Y ∀ v ∈ Y
(5.22)

and

(L′
u(ȳ, ū, p̄), w)U = α(ū, w)U + 〈p̄, Bw〉Z∗,Z

= (αū+ B∗p̄, w)U ∀ w ∈ U.
(5.23)

Thus (5.14)–(5.16) take the form

Aȳ +Bū = g, (5.24)

A∗p̄ = −Q∗(Qȳ − qd), (5.25)

ū ∈ Uad, (αū+ B∗p̄, u− ū)U ≥ 0 ∀ u ∈ Uad. (5.26)
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Distributed control of elliptic equations

We consider next the distributed optimal control of a steadytemperature distribution with
boundary temperature zero

min f(y, u) :=
1

2
‖y − yd‖

2
L2(Ω) +

α

2
‖u‖2L2(Ω)

subject to −∆y = γ u onΩ,

y = 0 on∂Ω,

a ≤ u ≤ b onΩ,

(5.27)

where
γ ∈ L∞(Ω) \ {0}, γ ≥ 0, a, b ∈ L2(Ω), a ≤ b.

We have already observed that (5.27) has the form (5.21) with

U = H = L2(Ω), Y = H1
0 (Ω), Z = Y ∗, g = 0, Q = IY,H ,

and

A ∈ L(Y, Y ∗), 〈Ay, v〉Y ∗,Y = a(y, v) =

∫

Ω

∇y · ∇v dx,

B ∈ L(U, Y ∗), 〈Bu, v〉Y ∗,Y = −(γu, v)L2(Ω).

As a Hilbert space,Y is reflexive andZ∗ = Y ∗∗ can be identified withY through

〈p, y∗〉Y ∗∗,Y ∗ = 〈y∗, p〉Y ∗,Y ∀ y∗ ∈ Y ∗, p ∈ Y = Y ∗∗.

This yields
〈p,Ay〉Z∗,Z = 〈Ay, p〉Y ∗,Y = a(y, p) = a(p, y).

Let (ȳ, ū) ∈ Y × U be an optimal solution. Then by Corollary 5.2.4 and (5.22), (5.23) the
optimality system in the form (5.18)–(5.20) reads

a(ȳ, v)− (γū, v)L2(Ω) = 0 ∀ v ∈ Y, (5.28)

(ȳ − yd, v)L2Ω + a(p̄, v) = 0 ∀ v ∈ Y, (5.29)

a ≤ ū ≤ b, (αū− γp̄, u− ū)2L(Ω) ≥ 0, ∀ u ∈ U, a ≤ u ≤ b. (5.30)

Now the adjoint equation (5.28) is just the weak formulationof

−∆p̄ = −(ȳ − yd), p̄|∂Ω = 0.

Applying Lemma 5.2.3 we can summarize
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Theorem 5.2.5 If (ȳ, ū) is an optimal solution of(5.27)then there exist̄p ∈ H1
0 (Ω), z̄a, z̄b ∈

L2(Ω) such that the following optimality conditions hold in the weaksense.

−∆ȳ = γū, ȳ|∂Ω = 0,

−∆p̄ = −(ȳ − yd), p̄|∂Ω = 0,

αū− γp̄+ z̄b − z̄a = 0,

ū ≥ a, z̄a ≥ 0, z̄a (ū− a) = 0,

ū ≤ b, z̄b ≥ 0, z̄b (b− ū) = 0.

Distributed control of semilinear elliptic equations

We consider next the distributed optimal control of a semilinear elliptic PDE:

min f(y, u) :=
1

2
‖y − yd‖

2
L2(Ω) +

α

2
‖u‖2L2(Ω)

subject to −∆y + y3 = γ u onΩ,

y = 0 on∂Ω,

a ≤ u ≤ b onΩ,

(5.31)

where
γ ∈ L∞(Ω) \ {0}, γ ≥ 0, a, b ∈ L∞(Ω), a ≤ b.

Letn ≤ 3. By the theory of monotone operators one can show that there exists a continuous
solution operator of the state equation

u ∈ U := L2(Ω) → y ∈ Y := H1
0 (Ω).

Let A : H1
0 (Ω) → H1

0 (Ω)
∗ be the operator associated with the bilinear forma(y, v) =

∫

Ω
∇y · ∇v dx for the Laplace operator−∆y and let

N : y → y3.

Then the weak formulation of the state equation can be written in the form

E(y, u) := Ay +N(y)− γu = 0.

By the Sobolev imbedding theorem 2.2.25 one has forn ≤ 3 the continuous imbedding

H1
0 (Ω) ⊂ L6(Ω).

Moreover, the mappingN : y ∈ L6(Ω) → y3 ∈ L2(Ω) is continuously Fŕechet differen-
tiable with

N ′(y)v = 2y2v.

At this point, it is convenient to prove first the following extension of Ḧ’older’s inequality:
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Lemma 5.2.6 Let ω ⊂ R
n be measurable. Then, for allpi, p ∈ [1,∞] with 1/p1 + · · · +

1/pk = 1/p and allui ∈ Lpi(Ω), there holdsu1 · · · uk ∈ Lp(Ω) and

‖u1 · · · uk‖Lp ≤ ‖u1‖Lp1 · · · ‖uk‖Lpk .

Proof: We use induction. Fork = 1 the assertion is trivial and fork = 2 we obtain it
from Hölder’s inequality: From1/p1 + 1/p2 = 1/p we see that1/q1 + 1/q2 = 1 holds for
qi = pi/p and thus

‖u1u2‖Lp = ‖|u1|
p|u2|

p‖
1/p

L1 ≤ ‖|u1|
p‖

1/p
Lq1‖|u2|

p‖
1/p
Lq2

= ‖|u1|
pq1‖

1/p1
L1 ‖|u2|

pq2‖
1/p2
L1 = ‖u1‖Lp1‖u2‖Lp2 .

As a consequence,u1u2 ∈ Lp(Ω) and the assertion is shown fork = 2.

For1, . . . , k − 1 → k, let q ∈ [1,∞] be such that

1

q
+

1

pk
=

1

p
.

Then we have1/p1+ · · ·+1/pk−1 = 1/q and thus (using the assertion fork−1), we obtain
u1 · · · uk−1 ∈ Lq(Ω) and

‖u1 · · · uk−1‖Lq ≤ ‖u1‖Lp1 · · · ‖uk−1‖Lpk−1 .

Therefore, using the assertion fork = 2,

‖u1 · · · uk‖Lp ≤ ‖u1 · · · uk−1‖Lq‖uk‖Lpk = ‖u1‖Lp1 · · · ‖uk‖Lpk .

2

We now return to the proof of the F-differentiabilty ofN : We just have to apply the Lemma
with p1 = p2 = p3 = 6 andp = 2:

‖(y + h)3 − y3 − 3y2h‖L2 = ‖3yh2 + h3‖L2 = 3‖y‖L6‖h‖
2
L6 + ‖h‖3L6

= O(‖h‖2L6) = o(‖h‖L6).

This shows the F-differentiability ofN with derivativeN ′. Furthermore, to prove the conti-
nuity ofN ′, we estimate

‖(N ′(y + h)−N ′(y))v‖L2 = 3‖((y + h)2 − y2)v‖L2 = 3‖(y + h)hv‖L2

= 3‖y + h‖L6‖h‖L6‖v‖L6 .

Hence,

‖N ′(y + h)−N ′(y)‖L2,L6 ≤ 3‖y + h‖L6‖h‖L6

‖h‖L6→0
−→ 0.
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Therefore,E : Y × U → Y ∗ =: Z is continuously Fŕechet differentiable with

E ′
y(y, u)v = Av + 3y2v, E ′

u(y, u)w = −γw.

Finally,E ′
y(y, u) ∈ L(Y, Z) has a bounded inverse, since for anyy ∈ Y the equation

Av + 3y2v = f

has a bounded solution operatorf ∈ Z → v ∈ Y . Hence, Assumption (OPT) is satisfied.
The optimality conditions are now very similar to the linear-quadratic problem (5.27) with
the only difference that nowE ′

y(y, u)v = Av + 2y2v: Let (ȳ, ū) ∈ Y × U be an optimal
solution. Then by Corollary 5.2.4 the optimality system in the form (5.18)–(5.20) reads

Aȳ + ȳ3 − γū = 0, (5.32)

(ȳ − yd, v)
2
LΩ + a(p̄, v) + (3ȳ2p̄, v)2L(Ω) = 0 ∀ v ∈ Y, (5.33)

a ≤ ū ≤ b, (αū− γp̄, u− ū)2L(Ω) ≥ 0, ∀ a ≤ u ≤ b. (5.34)

Now the adjoint equation (5.33) is just the weak formulationof

−∆p̄+ 3ȳ2p̄ = −(ȳ − yd), p̄|∂Ω = 0.

Applying Lemma 5.2.3 we can summarize

Theorem 5.2.7 If (ȳ, ū) is an optimal solution of(5.31)then there exist̄p ∈ H1
0 (Ω), z̄a, z̄b ∈

L2(Ω) such that the following optimality system holds in the weak sense.

−∆ȳ = γū, ȳ|∂Ω = 0,

−∆p̄+ 3ȳ2p̄ = −(ȳ − yd), p̄|∂Ω = 0,

αū− γp̄+ z̄b − z̄a = 0,

ū ≥ a, z̄a ≥ 0, z̄a (ū− a) = 0,

ū ≤ b, z̄b ≥ 0, z̄b (b− ū) = 0.

5.3 Optimality conditions for problems with general con-
straints

We sketch now the theory of optimality conditions for general problems of the form

min
w∈W

f(w) subject to G(w) ∈ K, w ∈ C. (5.35)

Here,f : W → R,G : W → V are continuously Fŕechet differentiable with Banach spaces
W,V , C ⊂ V is non-empty, closed and convex, andK ⊂ V is a closed convex cone. Here,
K is a cone if

∀ λ > 0 : v ∈ K =⇒ λv ∈ K.
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We denote the feasible set by

Wad := {w ∈ W : G(w) ∈ K, w ∈ C} .

Remark It is no restriction not to include equality constraints. Infact

E(w) = 0, C(w) ∈ KC

is equivalent to

G(w) :=

(
E(w)

C(w)

)

∈ {0} × KC =: K.

5.3.1 A basic first order optimality condition

Let w̄ be a local solution of (5.35). To develop an extension of Theorem 5.2.2, we define
the cone of feasible directions as follows.

Definition 5.3.1 Let Wad ⊂ W be nonempty. Thetangent coneof Wad at w ∈ Wad is
defined by

T (Wad;w) =
{

s ∈ W : ∃ ηk > 0, wk ∈ Wad : lim
k→∞

wk = w, lim
k→∞

ηk(wk − w) = s
}

.

Then we have the following optimality condition.

Theorem 5.3.2 Letf : W → R be continuously Fŕechet differentiable. Then for any local
solutionw̄ of (5.35)the following optimality condition holds.

w̄ ∈ Wad and 〈f ′(w̄), s〉W ∗,W ≥ 0 ∀ s ∈ T (Wad; w̄). (5.36)

Proof: w̄ ∈ Wad is obvious. Lets ∈ T (Wad; w̄) be arbitrary. Then there exist(wk) ⊂ Wad

andηk > 0 with wk → w̄ undηk(wk − w̄) → s. This yields for all sufficiently largek

0 ≤ ηk(f(wk)−f(w̄)) = 〈f ′(w̄), ηk(wk− w̄)〉W ∗,W +ηko(‖wk − w̄‖W ) → 〈f ′(w̄), s〉W ∗,W

sinceηko(‖wk − w̄‖W ) → 0, which follows fromηk(wk − w̄) → s. 2

5.3.2 Constraint qualification and Robinsons’s regularity condition

We want to replace the tangent cone by a cone with a less complicated representation.
Linearization of the constraints (assumingG is continuously differentiable) leads us to the
linearization coneat a pointw̄ ∈ Wad defined by

L(Wad, G,K, C; w̄) = {η d : η > 0, d ∈ W, G(w̄) +G′(w̄)d ∈ K, w̄ + d ∈ C} .
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Assume now that the a local solution̄w of (5.35) satisfies the

Constraint Qualification:

L(Wad, G, C,K; w̄) ⊂ T (Wad; w̄) (5.37)

Then the following result is obvious.

Theorem 5.3.3 Let f : W → R, G : W → V be continuously Fŕechet differentiable,
with Banach-spacesW , V . Further letC ⊂ V be non-empty, closed and convex, and let
K ⊂ V be a closed convex cone. Then at every local solutionw̄ of (5.35)satisfying(5.37)
the following optimality condition holds.

w̄ ∈ Wad and 〈f ′(w̄), s〉W ∗,W ≥ 0 ∀ s ∈ L(Wad, G, C,K; w̄). (5.38)

Remark If G is affine linear, then (5.37) is satisfied. In fact, lets ∈ L(Wad, G, C,K; w̄).
Thens = ηd with η > 0 andd ∈ W ,

G(w̄ + d) = G(w̄) +G′(w̄)d ∈ K, w̄ + d ∈ C.

SinceG(w̄) ∈ K and w̄ ∈ C, the convexity ofK andC yieldswk := w̄ + η
k
d ∈ Wad.

Choosingηk = 1/k shows thats ∈ T (Wad; w̄). 2

In general, (5.37) can be ensured ifw̄ satisfies the

Regularity Condition of Robinson:

0 ∈ int (G(w̄) +G′(w̄) (C − w̄)−K) . (5.39)

We have the following important and deep result by Robinson [Ro76].

Theorem 5.3.4 Robinson’s regularity condition(5.39) implies the constraint qualification
(5.37).

Proof: See [Ro76, Thm. 1, Cor. 2].2

5.3.3 Karush-Kuhn-Tucker conditions

Using Robinson’s regularity condition, we can write the optimality condition (5.38) in a
more explicit form.

Theorem 5.3.5 (Zowe and Kurcyusz [ZK79])
Let f : W → R, G : W → V be continuously Fŕechet differentiable, with Banach-
spacesW , V . Further letC ⊂ V be non-empty, closed and convex, and letK ⊂ V be a
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closed convex cone. Then for any local solutionw̄ of (5.35)at which Robinson’s regularity
condition(5.39)is satisfied, the following optimality condition holds:

There exists a Lagrange multiplier̄q ∈ V ∗ with

G(w̄) ∈ K, (5.40)

q̄ ∈ K◦ := {q ∈ V ∗ : 〈q, v〉V ∗,V ≤ 0 ∀ v ∈ K} , (5.41)

〈q̄, G(w̄)〉V ∗,V = 0, (5.42)

w̄ ∈ C, 〈f ′(w̄) +G′(w̄)∗q̄, w − w̄〉W ∗,W ≥ 0 ∀ w ∈ C. (5.43)

Using the Lagrangian function

L(w, q) := f(w) + 〈q,G(w)〉V ∗,V

we can write(5.43)in the compact form

w̄ ∈ C, 〈L′
w(w̄, q̄), w − w̄〉W ∗,W ≥ 0 ∀ w ∈ C. (5.43)

Proof: Under Robinson’s regularity condition (5.39), a separation argument can be used
to derive (5.41)–(5.43), see [ZK79].2

A similar result can be shown ifK is a closed convex set instead of a closed convex cone,
see [BS98], but then (5.41), (5.42) have a more complicated structure.

5.3.4 Application to PDE-constrained optimization

In PDE-constrained optimization, we have usually a state equation and constraints on con-
trol and/or state. Therefore, we consider as a special case the problem

min
(y,u)∈Y×U

f(y, u) subject toE(y, u) = 0, C(y) ∈ KC , u ∈ Uad, (5.44)

whereE : Y × U → Z andC : Y → V are continuously Fŕechet differentiable,KC ⊂ V
is a closed convex cone in a Banach spaceỸ ⊃ Y andUad ⊂ U is a closed convex set. We
set

G :

(
y

u

)

∈ W := Y × U 7→

(
E(y, u)

C(y)

)

∈ Z × V, K = {0} × KC , C = Y × Uad.

Then (5.44) has the form (5.35) and Robinson’s regularity condition at a feasible point
w̄ = (ȳ, ū) reads

0 ∈ int

((
0

C(ȳ)

)

+

(
E ′
y(w̄) E ′

u(w̄)
C ′(ȳ) 0

)(
Y

Uad − ū

)

−

(
0

KC

))

. (5.45)
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We rewrite now (5.40)–(5.43) for our problem. The multiplier has the formq = (p, λ) ∈
Z∗ × V ∗ and the Lagrangian function is given by

L(y, u, q, λ) = f(y, u) + 〈p, E(y, u)〉Z∗,Z + 〈λ,C(y)〉V ∗,V = L(y, u, p) + 〈λ,C(y)〉V ∗,V

with the Lagrangian
L(y, u, p) = f(y, u) + 〈p, E(y, u)〉Z∗,Z

for the equality constraints.

SinceK = {0} × KC , we have
K◦ = V ∗ ×K◦

C

and thus (5.40)–(5.43) read

E(ȳ, ū) = 0, C(ȳ) ∈ KC ,

λ̄ ∈ K◦
C , 〈λ̄, C(ȳ)〉V ∗,V = 0,

〈L′
y(ȳ, ū, p̄) + C ′(ȳ)∗λ̄, y − ȳ〉Y ∗,Y ≥ 0 ∀ y ∈ Y,

ū ∈ Uad, 〈L′
u(ȳ, ū, p̄), u− ū〉U∗,U ≥ 0 ∀ u ∈ Uad.

This yields finally

E(ȳ, ū) = 0, C(ȳ) ∈ KC , (5.46)

λ̄ ∈ K◦
C , 〈λ̄, C(ȳ)〉V ∗,V = 0, (5.47)

Ly(ȳ, ū, p̄) + C ′(ȳ)∗λ̄ = 0, (5.48)

ū ∈ Uad, 〈Lu(ȳ, ū, p̄), u− ū〉U∗,U ≥ 0 ∀ u ∈ Uad. (5.49)

Remark Without the state constraintC(y) ∈ KC (which can formally be removed by
omitting everything involvingC or by making the constraint trivial, e.g,C(y) = y, V = Y ,
KC = Y ), we recover exactly the optimality conditions (5.14)–(5.16) of Corollary 5.2.4.2

We show next that the following Slater-type condition implies Robinson’s regularity condi-
tion (5.45).

Lemma 5.3.6 Let w̄ ∈ Wad. If E ′
y(w̄) ∈ L(Y, Z) is surjective and if there exist̃u ∈ Uad

and ỹ ∈ Y with

E ′
y(w̄)(ỹ − ȳ) + E ′

u(w̄)(ũ− ū) = 0,

C(ȳ) + C ′(ȳ)(ỹ − ȳ) ∈ int(KC)

then Robinson’s regularity condition(5.45)is satisfied.

Proof: Let
ṽ := C(ȳ) + C ′(ȳ)(ỹ − ȳ).
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Then there existsε > 0 with
ṽ + BV (2ε) ⊂ KC .

HereBV (ε) is the openε-ball in V . Furthermore, there existsδ > 0 with

C ′(ȳ)BY (δ) ⊂ BV (ε).

Using thatũ ∈ Uad andỹ − ȳ + BY (δ) ⊂ Y we have
(

0

C(ȳ)

)

+

(
E ′
y(w̄) E ′

u(w̄)
C ′(ȳ) 0

)(
Y

Uad − ū

)

−

(
0

KC

)

⊃

(
0

C(ȳ)

)

+

(
E ′
y(w̄) E ′

u(w̄)
C ′(ȳ) 0

)(
ỹ − ȳ + BY (δ)

ũ− ū

)

−

(
0

ṽ + BV (2ε)

)

=

(
E ′
y(w̄)

C ′(ȳ)

)

BY (δ) +

(
0

BV (2ε)

)

⊃

(
E ′
y(w̄)BY (δ)

BV (ε)

)

.

In the last step we have usedC ′(ȳ)BY (δ) ⊂ BV (ε) and that, for allv ∈ BV (ε), therte
holdsv + BV (2ε) ⊃ BV (ε). By the open mapping theoremE ′

y(w̄)BY (ε) is open inZ and
contains0. Thererefore, the set on the left hand side is an open neighborhood of0 in Z×V .
2

5.3.5 Applications

Elliptic problem with state constraints

We consider the problem

min f(y, u) :=
1

2
‖y − yd‖

2
L2(Ω) +

α

2
‖u‖2L2(Ω)

subject to −∆y + y = γ u onΩ,
∂y

∂ν
= 0 on∂Ω,

y ≥ 0 onΩ.

(5.50)

Let n ≤ 3. We know from Theorem 2.3.7 that foru ∈ U := L2(Ω) there exists a unique
weak solutiony ∈ H1(Ω) ∩ C(Ω̄) of the state equation. We can write the problem in the
form

min f(y, u) subject to Ay +Bu = 0, y ≥ 0.

whereBu = −γu, andA is induced by the bilinear forma(y, v) =
∫

Ω
∇y · ∇v dx +

(y, v)L2(Ω).

With appropriate spacesY ⊂ H1(Ω), Z ⊂ H1(Ω)∗ andV ⊃ Y we set

E :

(
y

u

)

∈ Y ×U 7→ Ay+Bu ∈ Z, C(y) = y, KC = {v ∈ V : v ≥ 0} , Uad = U
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and arrive at a problem of the form (5.44). For the naive choiceV = Y = H1(Ω), Z = Y ∗,
the coneKC has no interior point. But sinceBu = −γu ∈ L2(Ω), we know that all solutions
y of the state equation live in the space

Y =
{
y ∈ H1(Ω) ∩ C(Ω̄) : Ay ∈ U∗ = L2(Ω)

}

andY is a Banach space with the norm‖y‖H1(Ω) + ‖y‖C(Ω̄) + ‖Ay‖L2(Ω) (why?).

Here,Ay ∈ L2(Ω) has to be understood in the sense thatAy ∈ (H1(Ω))∗ can be represented
in the formAy = (f, ·)(L

2(Ω)) with somef ∈ L2(Ω).

ThenA : Y 7→ L2(Ω) =: Z is bounded and by Theorem 2.3.7 also surjective. Finally, we
chooseV = C(Ω̄), thenV ⊃ Y andKC ⊂ V has an interior point.

Now assume that there existsỹ ∈ Y , ỹ > 0 andũ ∈ U with (note thatE ′
y = A,E ′

u = B)

A(ỹ − ȳ) + B(ũ− ū) = 0.

For example in the caseγ ≡ 1 the choicẽy = ȳ+1, ũ = ū+1 works. Then by Lemma 5.3.6
Robinson’s regularity assumption is satisfied. Therefore, at a solution(ȳ, ū) the necessary
conditions (5.46)–(5.49) are satisfied: Using that

L(y, u, p) =
1

2
‖y − yd‖

2
L2(Ω) +

α

2
‖u‖2L2(Ω) + (p,Ay + Bu)L2(Ω)

we obtain

Aȳ + Bū = 0, ȳ ≥ 0,

λ̄ ∈ K◦
C , 〈λ̄, ȳ〉C(Ω̄)∗,C(Ω̄) = 0,

(ȳ − yd, v)L2(Ω) + (p̄, Av)L2(Ω) + 〈λ̄, v〉C(Ω̄)∗,C(Ω̄) = 0 ∀ v ∈ Y,

(αū− γp̄, u− ū)L2(Ω) ≥ 0 ∀ u ∈ U.

One can show that the setK◦
C ⊂ C(Ω̄)∗ of nonpositive functionals onC(Ω̄) can be identified

with nonpositive regular Borel measures, i.e.

λ ∈ K◦
C ⇐⇒

〈λ, v〉C(Ω̄)∗,C(Ω̄) = −

∫

Ω

v(x) dµΩ(x)−

∫

∂Ω

v(x) dµ∂Ω(x) with nonneg. measuresµΩ, µ∂Ω.

Therefore, the optimality system is formally a weak formulation of the following system.

−∆ȳ + ȳ = γū onΩ,
∂y

∂ν
= 0 on∂Ω,

ȳ ≥ 0, µ̄Ω, µ̄∂Ω nonnegative regular Borel measures,
∫

Ω

ȳ(x) dµΩ(x) +

∫

∂Ω

ȳ(x) dµ∂Ω(x) = 0,

−∆p̄+ p̄ = −(ȳ − yd) + µ̄Ω onΩ,
∂p

∂ν
= µ̄∂Ω on∂Ω,

αū+ γp̄ = 0.
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Chapter 6

Generalized Newton methods

The aim of this chapter is to lay the ground for fast locally convergent methods that are
applicable to the (constrained) optimization of complex systems. Newton’s method or vari-
ants of it are at the heart of the most efficient methods of nonlinear optimization. Newton’s
method is applicable to systems of equations

G(x) = 0. (6.1)

HereG : X → Y must be sufficiently smooth. The classical Newton’s method requiresG
to be continuously F-differentiable, but as we will see, semismoothness ofG is sufficient.

To get the link from optimization problems to the equation (6.1), we note the following:

• If w̄ is a local solution of
min f(w)

andf : W → R is continuously differentiable, then it satisfies the optimality condition

f ′(w̄) = 0.

This results in (6.1) withG : W → W ∗,G(w) = f ′(w).

• Let (ȳ, ū) be a local solution of

min f(y, u) s.t. E(y, u) = 0

with f : Y × U → R andE : Y × U → Z continuously F-differentiable. Assume
thatE ′

y(ȳ, ū) is boundedly invertible. Then there exists by Corollary 5.2.4 a Lagrange
multiplier (adjoint state)̄p ∈ Z∗ such that the following optimality condition holds:

f ′
y(ȳ, ū) + E ′

y(ȳ, ū)
∗p̄ = 0,

f ′
u(ȳ, ū) + E ′

u(ȳ, ū)
∗p̄ = 0,

E(ȳ, ū) = 0.
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Defining

G : Y × U × Z∗ → Y ∗ × U∗ × Z,

G(y, u, µ) =

(
f ′(y, u) + E ′

(y,u)(y, u)
∗µ

E(y, u)

)

=

(
L′
(y,u)(y, u, p)

E(y, u)

)

,

we arrive at an operator equation of the form (6.1).

• Let (ȳ, ū) be a local solution of

min f(y, u) s.t. E(y, u) = 0, u ∈ Uad

with a Hilbert spaceU , ∅ 6= Uad ⊂ U closed, convex andf : Y × U → R and
E : Y × U → Z continuously F-differentiable, . Assume thatE ′

y(ȳ, ū) is boundedly
invertible. Then there exists by Corollary 5.2.4 a Lagrange multiplier (adjoint state)
p̄ ∈ Z∗ such that the following optimality condition holds:

f ′
y(ȳ, ū) + E ′

y(ȳ, ū)
∗p̄ = 0,

ū− P (ū− β(f ′
u(ȳ, ū) + E ′

u(ȳ, ū)
∗p̄)) = 0,

E(ȳ, ū) = 0,

wereP is the projection ontoUad andβ > 0 is arbitrary. Note, however, that the pro-
jection is Lipschitz-continuous, but non-differentiable.

6.1 A general superlinear convergence result

Consider the operator equation (6.1) withG : X → Y ,X, Y Banach spaces.

A general Newton-type method for (6.1) has the form

Algorithm 6.1.1 (Generalized Newton’s method)

0. Choosex0 ∈ X (sufficiently close to the solutionx∗).

For k = 0, 1, 2, . . . :

1. Choose an invertible operatorMk ∈ L(X, Y ).

2. Obtainsk by solving
Mks = −G(xk), (6.2)

and setxk+1 = xk + sk.

We now investigate the generated sequence(xk) in a neighborhood of a solutionx∗ ∈ X,
i.e.,G(x∗) = 0.
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For the distancedk := xk − x∗ to the solution we have

Mkd
k+1 =Mk(x

k+1−x∗) =Mk(x
k+sk−x∗) =Mkd

k−G(xk) = G(x∗)+Mkd
k−G(xk).

Hence, we obtain:

1. (xk) converges q-linearly tox∗ with rateγ ∈ (0, 1) iff

‖M−1
k (G(x∗ + dk)−G(x∗)−Mkd

k)‖X ≤ γ‖dk‖X ∀ k with ‖dk‖X sufficiently small.
(6.3)

2. (xk) converges q-superlinearly tox∗ iff

‖M−1
k (G(x∗ + dk)−G(x∗)−Mkd

k)‖X = o(‖dk‖X) for ‖dk‖X → 0. (6.4)

3. (xk) convergences with q-order1 + α > 1 iff

‖M−1
k (G(x∗ + dk)−G(x∗)−Mkd

k)‖X = O(‖dk‖
1+α

X ) for ‖dk‖X → 0. (6.5)

In 1., the esimate is meant uniformly ink, i.e., there existsδγ > 0 such that

‖M−1
k (G(x∗ + dk)−G(x∗)−Mkd

k)‖X ≤ γ‖dk‖X ∀ k with ‖dk‖X < δγ.

In 2.,o(‖dk‖X) is meant uniformly ink, i.e., for allη ∈ (0, 1), there existsδη > 0 such that

‖M−1
k (G(x∗ + dk)−G(x∗)−Mkd

k)‖X ≤ η‖dk‖X ∀ k with ‖dk‖X < δη.

The condition in 3. and those stated below are meant similarly.

It is convenient, and often done, to split the smallness assumption on

‖M−1
k (G(x∗ + dk)−G(x∗)−Mkd

k)‖X

in two parts:

1. Regularity condition:
‖M−1

k ‖Y,X ≤ C ∀ k ≥ 0. (6.6)

2. Approximation condition :

‖G(x∗ + dk)−G(x∗)−Mkd
k‖X = o(‖dk‖X) for ‖dk‖X → 0. (6.7)

or
‖G(x∗ + dk)−G(x∗)−Mkd

k‖X = O(‖dk‖
1+α

X ) for ‖dk‖X → 0. (6.8)

We obtain

Theorem 6.1.2 Consider the operator equation(6.1) with G : X → Y , whereX andY
are Banach spaces. Let(xk) be generated by the generalized Newton method (Alg.6.1.1).
Then:
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1. If x0 is sufficiently close tox∗ and(6.3)holds thenxk → x∗ q-linearly with rateγ.

2. If x0 is sufficiently close tox∗ and (6.4) (or (6.6) and (6.7)) holds thenxk → x∗ q-
superlinearly.

3. If x0 is sufficiently close tox∗ and (6.5) holds (or (6.6) and (6.8)) thenxk → x∗ q-
superlinearly with order1 + α.

Proof: 1. Let δ > 0 be so small that (6.3) holds for allxk with ‖dk‖X < δ. Then, forx0

satisfying‖x0 − x∗‖X < δ, we have

‖x1 − x∗‖X = ‖d1‖X = ‖M−1
0 (G(x∗ + d0)−G(x∗)−M0d

0)‖X ≤ γ‖d0‖X
= γ‖x0 − x∗‖X < δ.

Inductively, let‖xk − x∗‖X < δ. Then

‖xk+1 − x∗‖X = ‖dk+1‖X = ‖M−1
k (G(x∗ + dk)−G(x∗)−Mkd

k)‖X
≤ γ‖dk‖X = γ‖xk − x∗‖X < δ.

Hence, we have
‖xk+1 − x∗‖X ≤ γ‖xk − x∗‖X ∀ k ≥ 0.

2. Fix γ ∈ (0, 1) and letδ > 0 be so small that (6.3) holds for allxk with ‖dk‖X < δ. Then,
for x0 satisfying‖x0 − x∗‖X < δ, we can apply 1. to concludexk → x∗ with rateγ.

Now, (6.4) immediately yields

‖xk+1 − x∗‖X = ‖dk+1‖X = ‖M−1
k (G(x∗ + dk)−G(x∗)−Mkd

k)‖X = o(‖dk‖X)

= o(‖xk − x∗‖X) (k → ∞).

3. As in 2, but now

‖xk+1 − x∗‖X = ‖dk+1‖X = ‖M−1
k (G(x∗ + dk)−G(x∗)−Mkd

k)‖X = O(‖dk‖
1+α

X )

= O(‖xk − x∗‖
1+α

X ) (k → ∞).

2

We emphasize that an inexact solution of the Newton system (6.2) can be interpreted as
a solution of the same system, but withMk replaced by a perturbed operator̃Mk. Since
the condition (6.4) (or the conditions (6.6) and (6.7)) remain valid if Mk is replaced by a
perturbed operator̃Mk and the perturbation is sufficiently small, we see that the fast conver-
gence of the generalized Newton’s method is not affected if the system is solved inexactly
and the accuracy of the solution is controlled suitably. TheDennis-Moŕe condition [DS83]
characterizes perturbations that are possible without destroying q-superlinear convergence.

We will now specialize on particular instances of generalized Newton methods. The first
one, of course, is Newton’s method itself.
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6.2 The classical Newton’s method

In the classical Newton’s method, we assume thatG is continuously F-differentiable and
chooseMk = G′(xk).

The regularity condition then reads

‖G′(xk)−1‖Y,X ≤ C ∀ k ≥ 0.

By Banach’s Lemma (asserting continuity ofM 7→M−1), this holds true ifG′ is continuous
atx∗ and

G′(x∗) ∈ L(X, Y ) is continuously invertible.

This condition is the textbook regularity requirement in the analysis of Newton’s method.

Fréchet differentiability atx∗ means

‖G(x∗ + dk)−G(x∗)−G′(x∗)dk‖X = o(‖dk‖X).

Now, due to the continuity ofG′,

‖G(x∗ + dk)−G(x∗)−Mkd
k‖X = ‖G(x∗ + dk)−G(x∗)−G′(x∗ + dk)dk‖X

≤ ‖G(x∗ + dk)−G(x∗)−G′(x∗)dk‖X + ‖(G′(x∗)−G′(x∗ + dk))dk‖X

= o(‖dk‖X) + ‖G′(x∗)−G′(x∗ + dk)‖X,Y ‖d
k‖X = o(‖dk‖X).

Therefore, we have proved the superlinear approximation condition.

If G′ is α-order Ḧolder continuous nearx∗, we even obtain the approximation condition of
order1 + α. In fact, letL > 0 be the modulus of Ḧolder continuity. Then

‖G(x∗ + dk)−G(x∗)−Mkd
k‖Y = ‖G(x∗ + dk)−G(x∗)−G′(x∗ + dk)dk‖Y

=

∥
∥
∥
∥

∫ 1

0

(G′(x∗ + tdk)−G′(x∗ + dk))dk dt

∥
∥
∥
∥
Y

≤

∫ 1

0

‖G′(x∗ + tdk)−G′(x∗ + dk)‖X,Y dt ‖d
k‖X

≤ L

∫ 1

0

(1− t)α‖dk‖
α

X dt ‖d
k‖X

=
L

1 + α
‖dk‖

1+α

X = O(‖dk‖
1+α

X ).

Summarizing, we have proved the following

Corollary 6.2.1 LetG : X → Y be a continuously F-differentiable operator between Ba-
nach spaces and assume thatG′(x∗) is continuously invertible at the solutionx∗. Then New-
ton’s method (i.e., Alg.6.1.1withMk = G′(xk) for all k) converges locally q-superlinearly.
If, in addition,G′ is α-order Hölder continuous nearx∗, the order of convergence is1 + α.
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Remark 6.2.2 The choice ofMk in the ordinary Newton’s method,Mk = G′(xk), is point-
based, since it depends on the pointxk.

6.3 Semismooth Newton methods

If G is nonsmooth, the question arises if a suitable substitute forG′ can be found. We follow
[Ul01, Ul03] here; a related approach can be found in [HIK03]. Thinking at subgradients
of convex functions, which are set-valued, we consider set-valued generalized differentials
∂G : X ⇉ L(X, Y ). Then we will chooseMk point-based, i.e.,

Mk ∈ ∂G(xk).

If we want every such choiceMk to satisfy the superlinear approximation condition, then
we have to require

sup
M∈∂G(x∗+d)

‖G(x∗ + d)−G(x∗)−Md‖X = o(‖d‖X) for ‖d‖X → 0.

This approximation property is called semismoothness [Ul01, Ul03]:

Definition 6.3.1 (Semismoothness)LetG : X → Y be a continuous operator between
Banach spaces. Furthermore, let be given the set-valued mapping ∂G : X ⇉ L(X, Y )
with nonempty images (which we will call generalized differential in the sequel). Then

a) G is called∂G-semismooth atx ∈ X if

sup
M∈∂G(x+d)

‖G(x+ d)−G(x)−Md‖X = o(‖d‖X) for ‖d‖X → 0.

b) G is called∂G-semismooth of orderα > 0 at x ∈ X if

sup
M∈∂G(x+d)

‖G(x+ d)−G(x)−Md‖X = O(‖d‖1+αX ) for ‖d‖X → 0.

Lemma 6.3.2 If G : X → Y is continuously F-differentiable nearx, thenG is {G′}-
semismooth atx. Furthermore, ifG′ is α-order Hölder continuous nearx, thenG is {G′}-
semismooth atx of orderα.

Proof:

‖G(x+ d)−G(x)−G′(x+ d)d‖Y ≤

≤ ‖G(x+ d)−G(x)−G′(x)d‖Y + ‖G′(x)d−G′(x+ d)d‖Y
≤ o(‖d‖X) + ‖G′(x)−G′(x+ d)‖X,Y ‖d‖X = o(‖d‖X).
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Here, we have used the definition of F-differentiablity and the continuity ofG′.

In the case ofα-order Ḧolder continuity we have to work a little bit more:

‖G(x+ d)−G(x)−G′(x+ d)d‖Y =

∥
∥
∥
∥

∫ 1

0

(G′(x+ td)−G′(x+ d))d dt

∥
∥
∥
∥
Y

≤

∫ 1

0

‖G′(x+ td)−G′(x+ d)‖X,Y dt ‖d‖X ≤

∫ 1

0

L(1− t)α‖d‖αX dt ‖d‖X

=
L

1 + α
‖d‖1+αX = O(‖d‖1+αX ).

2

Example For locally Lipschitz-continuous functionsG : Rn → R
m, the standard choice

for ∂G is Clarke’s generalized Jacobian:

∂clG(x) = conv
{
M : xk → x, G′(xk) →M, G differentiable atxk

}
. (6.9)

This definition is justified sinceG′ exists almost everywhere onRn by Rademacher’s theo-
rem (which is a deep result).

Remark The classical definition of semismoothness for functionsG : Rn → R
m [Mi77,

QS93] is equivalent to∂clG-semismoothness, where∂clG is Clarke’s generalized Jacobian
defined in (6.9), in connection with directional differentiability of G.

Next, we give a concrete example of a semismooth function:

Example Considerψ : R → R, ψ(x) = P[a,b](x), then Clarke’s generalized derivative is

∂clψ(x) =







0 x < a or x > b,

1 a < x < b,

conv{0, 1} = [0, 1] x = a or x = b.

The∂clψ-semismoothness ofψ can be shown easily:

For allx /∈ {a, b} we have thatψ is continuously differentiable in a neighborhood ofx with
∂clψ ≡ {ψ′}. Hence, by Lemma 6.3.2,ψ is ∂clψ-semismooth atx.

Forx = a, we estimate explicitly: For smalld > 0, we have∂clψ(x) = {ψ′(a+ d)} = {1}
and thus

sup
M∈∂clψ(x+d)

|ψ(x+ d)− ψ(x)−Md| = a+ d− a− 1 · d = 0.

For smalld < 0, we have∂clψ(x) = {ψ′(a+ d)} = {0} and thus

sup
M∈∂clψ(x+d)

|ψ(x+ d)− ψ(x)−Md| = a− a− 0 · d = 0.

Hence, the semismoothness ofψ atx = a is proved.
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Forx = b we can do exactly the same.

The class of semismooth operators is closed with respect to awide class of operations, see
[Ul01]:

Theorem 6.3.3 LetX, Y , Z,Xi, Yi be Banach spaces.

a) If the operatorsGi : X → Yi are ∂Gi-semismooth atx then(G1, G2) is (∂G1, ∂G2)-
semismooth atx.

b) If Gi : X → Y , i = 1, 2, are ∂Gi-semismooth atx thenG1 + G2 is (∂G1 + ∂G2)-
semismooth atx.

c) LetG1 : Y → Z andG2 : X → Y be∂Gi-semismooth atG2(x) andx, respectively.
Assume that∂G1 is bounded neary = G2(x) and thatG2 is Lipschitz continuous near
x. ThenG = G1 ◦G2 is ∂G-semismooth with

∂G(x) = {M1M2 : M1 ∈ ∂G1(G2(x)), M2 ∈ ∂G2(x)} .

Proof: Parts a) and b) are straightforward to prove.

Part c):

Let y = G2(x) and considerd ∈ X. Leth(d) = G2(x+ d)− y. Then

‖h(d)‖Y = ‖G2(x+ d)−G2(x)‖Y ≤ L2‖d‖Y .

Hence, forM1 ∈ ∂G1(G2(x+ d)) andM2 ∈ ∂G2(x+ d), we obtain

‖G1(G2(x+ d))−G1(G2(x))−M1M2d‖Z =

= ‖G1(y + h(d))−G1(y)−M1h(d) +M1(G2(x+ d)−G2(x)−M2d)‖Z
≤ ‖G1(y + h(d))−G1(y)−M1h(d)‖Y + ‖M1‖Y,Z‖G2(x+ d)−G2(x)−M2d‖Y

By assumption, there existsC with ‖M1‖Y,Z ≤ C. Taking the supremum with respect to
M1,M2 and using the semismoothness gives

sup
M∈∂G(x+d)

‖G(x+ d)−G(x)−Md‖Z

≤ sup
M1∈∂G1(y+h(d))

‖G1(y + h(d))−G1(y)−M1h(d)‖Y

+ C sup
M2∈∂G2(x+d)

‖G2(x+ d)−G2(x)−M2d‖Y

= o(‖h(d)‖Y ) + o(‖d‖X) = o(‖d‖X).

2

The semismoothness concept ensures the approximation property required for generalized
Newton methods. In addition, we need a regularity condition, which can be formulated as
follows:
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There exist constantsC > 0 andδ > 0 such that

‖M−1‖Y,X ≤ C ∀M ∈ ∂G(x) ∀ x ∈ X, ‖x− x∗‖X < δ. (6.10)

Under these two assumptions, the following generalized Newton method for semismooth
operator equations is q-superlinearly convergent:

Algorithm 6.3.4 (Semismooth Newton’s method)

0. Choosex0 ∈ X (sufficiently close to the solutionx∗.)

For k = 0, 1, 2, . . . :

1. ChooseMk ∈ ∂G(xk).

2. Obtainsk by solving
Mks = −G(xk),

and setxk+1 = xk + sk.

The local convergence result is a simple corollary of Theorem 6.1.2:

Theorem 6.3.5 Let G : X → Y be continuous and∂G-semismooth at a solutionx∗ of
(6.1). Furthermore, assume that the regularity condition(6.10) holds. Then there exists
δ > 0 such that for allx0 ∈ X, ‖x0 − x∗‖X < δ, the semismooth Newton method (Alg.
6.3.4) converges q-superlinearly tox∗.

If G is ∂G-semismooth of orderα > 0 at x∗, then the convergence is of order1 + α.

Proof:

The regularity condition (6.10) implies (6.6) as long asxk is close enough tox∗. Further-
more, the semismoothness ofG at x∗ ensures the q-superlinear approximation property
(6.7).

In the case ofα-order semismoothness, the approximation property with order1+α holds.

Therefore, Theorem 6.1.2 yields the assertions.2

6.4 Semismooth Newton methods in function spaces

In section 6.3 we introduced the concept of semismoothness for nonsmooth operators and
developed superlinearly convergent generalized Newton methods for semismooth operator
equations. We will now show that optimality conditions can be rewritten as semismooth
equations.
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LetΩ ⊂ R
n be measurable with0 < |Ω| <∞. We consider the problem

min
(y,u)∈Y×L2(Ω)

f(y, u) E(y, u) = 0, a ≤ u ≤ b a.e. onΩ.

The optimality conditions are

f ′
y(ȳ, ū) + E ′

y(ȳ, ū)
∗p̄ = 0,

ū− P[a,b](ū− β(f ′
u(ȳ, ū) + E ′

u(ȳ, ū)
∗p̄)) = 0,

E(ȳ, ū) = 0,

wereP[a,b] is the projection ontoUad andβ > 0 is arbitrary. or alternatively, the reduced
problem

min
u∈L2(Ω)

f̂(u) a ≤ u ≤ b a.e. onΩ

with f̂ : L2(Ω) → R twice continuously F-differentiable. We can admit unilateral con-
straints (a ≤ u or u ≤ b) just as well. To avoid distinguishing cases, we will focus on the
bilateral casea, b ∈ L∞(Ω), b − a ≥ ν > 0 onΩ. We also could consider problems inLp,
p 6= 2. However, for the sake of compact presentation, we focus on the casep = 2, which
is the most important situation.

It is convenient to transform the bounds to constant bounds,e.g., via

u 7→
u− a

b− a
.

Hence, we will consider without restriction the problem

min
u∈L2(Ω)

f̂(u) l ≤ u ≤ r a.e. onΩ (6.11)

with constantsl < r. LetU = L2(Ω) andS = {u ∈ L2(Ω) : l ≤ u ≤ r}. We choose the
standard dual pairing〈·, ·〉U∗,U = (·, ·)L2 and then haveU∗ = U = L2(Ω). The optimality
conditions are

u ∈ S, (∇f̂(u), v − u)L2 ≥ 0 ∀ v ∈ S.

We now use the projectionPS ontoS, which is given by

P (v)(x) = P[l,r](v(x)), x ∈ Ω.

Then the optimality conditions can be written as

Φ(u) := u− P (u− β∇f̂(u)) = 0, (6.12)

whereβ > 0 is arbitrary, but fixed. Note that, sinceP conincides with the pointwise pro-
jection onto[l, r], we have

Φ(u)(x) = u(x)− P[l,r](u(x)− β∇f̂(u)(x)).
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Our aim now is to define a generalized differential∂Φ for Φ in such a way thatΦ is semis-
mooth.

By the chain rule and sum rule that we developed, this reduces to the question how a suitable
differential for the superpositionP[l,r](v(·)) can be defined.

In fact, the following can be proved:

Theorem 6.4.1 LetΩ ⊂ R
n be bounded andq ∈ (2,∞). Then the operator

Ψ : Lq(Ω) → L2(Ω), Ψ(u)(x) = P[l,r](u(x)),

is ∂Ψ-semismooth with

∂Ψ(u) = {g · I : g(x) = 1 if u(x) ∈ (l, r), g(x) = 0 if u(x) /∈ [l, r], g(x) ∈ [0, 1] if u(x) ∈ {l, r}} .

Proof: Let u, s ∈ Lq(Ω) be arbitrary. LetgI ∈ ∂Ψ(u+ s) be arbitrary.

If u(x) /∈ {l, r} and|s(x)| < dist(u(x), {l, r}), thent 7→ Ψ(u + ts)(x), t ∈ [0, 1] is linear
and thus we have

Ψ(u+ s)(x)−Ψ(u)(x)− g(x)s(x) = 0.

If u(x) = l ands(x) < r − l or u(x) = r ands(x) > l − r then again

Ψ(u+ s)(x)−Ψ(u)(x)− g(x)s(x) = 0.

In all other cases we have

|Ψ(u+ s)(x)−Ψ(u)(x)− g(x)s(x)| ≤ 2|s(x)|.

Hence, we have for allM ∈ ∂Ψ(u+ s) and allǫ > 0

‖Ψ(u+ s)−Ψ(u)−Ms‖L2 ≤ ‖2s 1
{x: |s(x)|<max(r−l,dist(u(x),{l,r})}‖L2

≤ ‖2s‖Lq‖1{x: |s(x)|<max(r−l,dist(u(x),{l,r})}‖L2q/(q−2) .

Now ‖s‖Lq → 0 impliess→ 0 almost everywhere. Therefore

‖1{x: |s(x)|<max(r−l,dist(u(x),{l,r})}‖L2q/(q−2) → 0

as‖s‖Lq → 0. 2

We now return to the operatorΦ defined in (6.12). To be able to prove the semismoothness
of Φ : L2 → L2 definied in (6.12), we need some kind of smoothing property ofthe
mapping

u 7→ u− β∇f̂(u).
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Therefore, we assume that∇f has the following structure:

There existβ > 0 andq > 2 such that

∇f̂(u) = αu+B(u),

B : L2(Ω) → Lq(Ω) continuously F-differentiable.

(6.13)

This assumption implies thatB is locally Lipschitz continuous. In fact,

‖B(u)− B(v)‖Lq ≤

∫ 1

0

‖B′(v + t(u− v))(u− v)‖Lq dt

≤

∫ 1

0

‖B′(v + t(u− v))‖L2,Lq dt ‖u− v‖L2 .

Remark This structure is met by many optimal control problems, see,e.g., the optimal
heating problem in the second part of section 4.3. There, we obtained

∇f̂(u) = αu− γp(u),

with α > 0, γ ∈ L∞(Ω) andL2(Ω) ∋ u 7→ p(u) ∈ H1(Ω) continuous affine linear. Thus,
using the Sobolev embedding theorems, we obtain that for appropriateq > 2, the operator

B : u 7→ −γp(u)

defines a continuous affine linear mapping fromL2 toLq as required.

If we now chooseβ = 1/α, then we have

Φ(u) = u− P[l,r](u− (1/α)(αu+ B(u))) = u− P[l,r](−(1/α)B(u)).

Example: Distributed control of elliptic equations

We consider for example

min f(y, u) :=
1

2
‖y − yd‖

2
L2(Ω) +

α

2
‖u‖2L2(Ω)

subject to −∆y = γ u onΩ,

y = 0 on∂Ω,

a ≤ u ≤ b onΩ,

(5.27)

where
γ ∈ L∞(Ω) \ {0}, γ ≥ 0, a, b ∈ L2(Ω), a ≤ b.

We choose as above
U = L2(Ω), Y = H1

0 (Ω), Z = Y ∗.
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As a Hilbert space,Y is reflexive andZ∗ = Y ∗∗ can be identified withY .

Let (ȳ, ū) ∈ Y × U be an optimal solution. Then by Corollary 5.2.4 and (5.22), (5.23) the
optimality system in the form (5.18)–(5.20) reads

a(ȳ, v)− (γū, v)L2(Ω) = 0 ∀ v ∈ Y,

(ȳ − yd, v)L2Ω + a(p̄, v) = 0 ∀ v ∈ Y,

a ≤ ū ≤ b, (αū− γp̄, u− ū)2L(Ω) ≥ 0, ∀ u ∈ U, a ≤ u ≤ b.

Moreover, we have
∇f̂(u) = αu− γp(u),

wherep = p(u) ∈ Y solves the adjoint equation

(y(u)− yd, v)L2Ω + a(p, v) = 0 ∀ v ∈ Y.

2

We obtain:

Theorem 6.4.2 Consider the problem(6.11) with l < r and let f̂ : L2(Ω) → L2(Ω)
satisfy condition(6.13). Then, forβ = 1/α, the operatorΦ in the reformulated optimality
conditions(6.12)is ∂Φ-semismooth with

∂Φ : L2(Ω) ⇉ L(L2(Ω), L2(Ω)),

∂Φ(u) =
{
M ; M = I +

g

α
·B′(u), g ∈ L∞(Ω),

g(x) ∈ ∂clP[l,r](−1/αB(u)(x)) for a.a.x ∈ Ω
}
.

Here,

∂P[l,r](t)







0 t < l or t > r,

1 l < t < r,

[0, 1] t = l or t = r.

Proof: By the chain rule, the smoothness ofB : L2 → Lq and the semismoothness of
Ψ : Lq → L2, Ψ(u)(x) = P[l,r](u(x)), we see thatΦ is semismooth with respect to the
stated generalized differential.2

For the applicability of the semismooth Newton method (Alg.6.3.4) we need, in addition,
the following regularity condition:

‖M−1‖L2,L2 ≤ C ∀M ∈ ∂Φ(u) ∀ u ∈ L2(Ω), ‖u− u∗‖L2 < δ.

Sufficient conditions for this regularity assumption in theflavor of second order sufficient
optimality conditions can be found in [Ul01, Ul01a].
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Chapter 7

Globalization for problems with simple
constraints

We develop now globalized descent methods for simply constrained problems of the form

min f(w) s.t. w ∈ S (7.1)

with W a Hilbert space,f : W → R continuously F-differentiable, andS ⊂ W closed
and convex. Optimality conditions for this type of problemshave already been considered
in 5.1.

Example 7.0.3 A scenario frequently found in practice is

W = L2(Ω), S =
{
u ∈ L2(Ω) : a(x) ≤ u(x) ≤ b(x) a.e. onΩ

}

withL∞-functionsa, b. It is then very easy to compute the projectionPS ontoS, which will
be needed in the following:

PS(w)(x) = P[a(x),b(x)](w(x)) = max(a(x),min(w(x), b(x))).

In the case of control constraints, the globalization techniques of this chapter can be com-
bined with the semismooth Newton method of the last chapter to obtain a globally conver-
gent method that converges locally superlinearly.

The presence of the constraint setS requires to take care that we stay feasible with respect
to S, or – if we think of an infeasible method – that we converge to feasibility. In the
following, we consider a feasible algorithm, i.e.,wk ∈ S for all k.

If wk is feasible and we try to apply the unconstrained descent method, we have the dif-
ficulty that already very small step sizesσ > 0 can result in pointswk + σsk that are
infeasible. The backtracking idea of considering only those σ ≥ 0 for whichwk + σsk is
feasible is not viable, since very small step sizes or evenσk = 0 might be the result.
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Therefore, instead of performing a line search along the ray
{
wk + σsk : σ ≥ 0

}
, we per-

form a line search along the projected path
{
PS(w

k + σsk) : σ ≥ 0
}
,

wherePS is the projection ontoS. Of course, we have to ensure that along this path we
achieve sufficient descent as long aswk is not a stationary point. Unfortunately, not any
descent direction is suitable here.

Example 7.0.4 Consider

S =
{
w ∈ R

2 : w1 ≥ 0, w1 + w2 ≥ 3
}
, f(w) = 5w2

1 + w2
2.

Then, atwk = (1, 2)T , we have∇f(wk) = (10, 4)T . Sincef is convex quadratic with
minimumw̄ = 0, the Newton step is

dk = −wk = −(1, 2)T .

This is a descent direction, since

∇f(wk)Tdk = −18.

But, forσ ≥ 0, there holds

PS(w
k − σdk) = PS((1− σ)(1, 2)T ) = (1− σ)

(
1

2

)

+ σ

(
3/2

3/2

)

=

(
1

2

)

+
σ

2

(
1

−1

)

.

From

∇f(wk)T
(

1

−1

)

= 6

we see that we are getting ascent, not descent, along the projected path, althoughdk is a
descent direction.

7.1 Projected gradient method

The example shows that care must be taken in choosing appropriate search directions for
projected methods. Since the projected descent propertiesof a search direction are more
complicated to judge than in the unconstrained case, it is out of the scope of this chapter to
give a general presentation of this topic. In the finite dimensional setting, we refer to [Ke99]
for a detailed discussion. Here, we only consider the projected gradient method.

Algorithm 7.1.1 (Projected gradient method)

0. Choosew0 ∈ S.
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For k = 0, 1, 2, 3, . . .:

1. Setsk = −∇f(wk).

2. Chooseσk by a projected step size rule such thatf(PS(w
k + σks

k)) < f(wk).

3. Setwk+1 := PS(w
k + σks

k).

For abbreviation, let
wkσ = wk − σ∇f(wk).

We will prove global convergence of this method. To do this, we need to collect some facts
about the projection operatorPS.

The following result shows that along the projected steepest descent path we achieve a
certain amount of descent:

Lemma 7.1.2 LetW be a Hilbert space and letf : W → R be continuously F-differentiable
on a neighborhood of the closed convex setS. Letwk ∈ S and assume that∇f is α-order
Hölder-continuous with modulusL > 0 on

{
(1− t)wk + tPS(w

k
σ) : 0 ≤ t ≤ 1

}
.

for someα ∈ (0, 1]. Then there holds

f(PS(w
k
σ))− f(wk) ≤ −

1

σ
‖PS(w

k
σ)− wk‖

2

W + L‖PS(w
k
σ)− wk‖

1+α

W

Proof:

f(PS(w
k
σ))− f(wk) = (∇f(vkσ), PS(w

k
σ)− wk)W

= (∇f(wk), PS(w
k
σ)− wk)W + (∇f(vkσ)−∇f(wk), PS(w

k
σ)− wk)W

with appropriatevkσ ∈
{
(1− t)wk + tPS(w

k
σ) : 0 ≤ t ≤ 1

}
.

Now, sincewkσ − wk = σsk = −σ∇f(wk) andwk = PS(w
k), we obtain

−σ(∇f(wk), PS(w
k
σ)− wk)W = (wkσ − wk, PS(w

k
σ)− wk)W

= (wkσ − PS(w
k), PS(w

k
σ)− PS(w

k))W

= (PS(w
k
σ)− PS(w

k), PS(w
k
σ)− PS(w

k))W

+ (wkσ − PS(w
k
σ), PS(w

k
σ)− PS(w

k))W
︸ ︷︷ ︸

≥0 by Lemma 5.1.2, b)

≥ (PS(w
k
σ)− PS(w

k), PS(w
k
σ)− PS(w

k))W

= ‖PS(w
k
σ)− wk‖

2

W .
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Next, we use
‖vkσ − wk‖W ≤ ‖PS(w

k
σ)− wk‖W .

Hence,

(∇f(vkσ)−∇f(wk), PS(w
k
σ)− wk)W ≤ ‖∇f(vkσ)−∇f(wk)‖W‖PS(w

k
σ)− wk‖W

≤ L‖vkσ − wk‖
α

W‖PS(w
k
σ)− wk‖W

≤ L‖PS(w
k
σ)− wk‖

1+α

W .

2

We now consider the following

Projected Armijo rule:

Choose the maximumσk ∈ {1, 1/2, 1/4, . . .} for which

f(PS(w
k + σks

k))− f(wk) ≤ −
γ

σk
‖PS(w

k + σks
k)− wk‖

2

W .

Hereγ ∈ (0, 1) is a constant.

In the unconstrained case, we recover the ordinary Armijo rule:

f(PS(w
k + σks

k))− f(wk) = f(wk + σks
k)− f(wk),

−
γ

σk
‖PS(w

k + σks
k)− wk‖

2

W = −
γ

σk
‖σks

k‖
2

W = −γσk‖s
k‖

2

W = γσk(∇f(w
k), sk)W .

As a stationarity measureΣ(w) = ‖p(w)‖W we use the norm of theprojected gradient

p(w)
def
= w − PS(w −∇f(w)).

In fact, the first-order optimality conditions for (7.1) are

w ∈ S, (∇f(w), v − w)W ≥ 0 ∀ v ∈ S.

By Lemma 5.1.2, this is equivalent to

w − PS(w −∇f(w)) = 0.

As a next result we show that projected Armijo step sizes exist.

Lemma 7.1.3 LetW be a Hilbert space and letf : W → R be continuously F-differentiable
on a neighborhood of the closed convex setS. Then, for allwk ∈ S with p(wk) 6= 0, the
projected Armijo rule terminates successfully.
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Proof: We proceed as in the proof of Lemma 7.1.2 and obtain (we have not assumed Ḧolder
continuity of∇f here)

f(PS(w
k
σ))− f(wk) ≤

−1

σ
‖PS(w

k
σ)− wk‖

2

W + o(‖PS(w
k
σ)− wk‖W ).

It remains to show that, for all smallσ > 0,

γ − 1

σ
‖PS(w

k
σ)− wk‖

2

W + o(‖PS(w
k
σ)− wk‖W ) ≤ 0

But this follows easily from (Lemma 5.1.2 e)):

γ − 1

σ
‖PS(w

k
σ)− wk‖

2

W ≤ (γ − 1)‖p(wk)‖W
︸ ︷︷ ︸

<0

‖PS(w
k
σ)− wk‖W .

2

Theorem 7.1.4 LetW be a Hilbert space,f : W → R be continuously F-differentiable,
andS ⊂ W be nonempty, closed, and convex. Consider Algorithm7.1.1with the projected
Armijo rule and assume thatf(wk) is bounded below. Furthermore, let∇f be α-order
Hölder continuous on

Nρ
0 =

{
w + s : f(w) ≤ f(w0), ‖s‖W ≤ ρ

}

for someα > 0 and someρ > 0. Then

lim
k→∞

‖p(wk)‖W = 0.

Proof: Setpk = p(wk) and assumepk 6→ 0. Then there existε > 0 and an infinite setK
with ‖pk‖W ≥ ε for all k ∈ K.

By construction we have thatf(wk) is monotonically decreasing and by assumption the
sequence is bounded below. For allk ∈ K, we obtain

f(wk)− f(wk+1) ≥
γ

σk
‖PS(w

k + σks
k)− wk‖

2

W ≥ γσk‖p
k‖

2

W ≥ γσkε
2,

where we have used the Armijo condition and Lemma 5.1.2 e). This shows(σk)K → 0 and
(‖PS(w

k + σks
k)− wk‖W )K → 0.

For largek ∈ K we haveσk ≤ 1/2 and therefore, the Armijo condition did not hold for the
step sizeσ = 2σk. Hence,

−
γ

2σk
‖PS(w

k + 2σks
k)− wk‖

2

W ≤ f(PS(w
k + 2σks

k))− f(wk)

≤ −
1

2σk
‖PS(w

k + 2σks
k)− wk‖

2

W + L‖PS(w
k + 2σks

k)− wk‖
1+α

W .
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Here, we have applied Lemma 7.1.2 and the fact that by Lemma 5.1.2 e)

‖PS(w
k + 2σks

k)− wk‖W ≤ 2‖PS(w
k + σks

k)− wk‖W
K∋k→∞
−→ 0.

Hence,

1− γ

2σk
‖PS(w

k + 2σks
k)− wk‖

2

W ≤ L‖PS(w
k + 2σks

k)− wk‖
1+α

W .

From this we derive

(1− γ)‖pk‖W‖PS(w
k + 2σks

k)− wk‖W ≤ L‖PS(w
k + 2σks

k)− wk‖
1+α

W .

Hence,

(1− γ)ε ≤ L‖PS(w
k + 2σks

k)− wk‖
α

W ≤ L2α‖PS(w
k + σks

k)− wk‖
α

W

K∋k→∞
−→ 0.

This is a contradiction.2

A careful choice of search directions will allow to extend the convergence theory to more
general classes of projected descent algorithms. For instance, in finite dimensions, q-superlinearly
convergent projected Newton methods and their globalization are investigated in [Ke99,
Be99]. In anL2 setting, the superlinear convergence of projected Newton methods was
investigated by Kelley and Sachs in [KS94].
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