Linear Algebra II Tutorial Sheet no. 14

TECHNISCHE UNIVERSITÄT DARMSTADT

Summer term 2011 July 12, 2011

Prof. Dr. Otto Dr. Le Roux Dr. Linshaw

Exercise T1 (Restriction of bilinear forms)

Consider a bilinear form σ in \mathbb{R}^n and its restriction $\sigma' = \sigma|_U$ to some linear subspace $U \subseteq \mathbb{R}^n$. Which of the following are generally true? (Give a proof sketch or a counter-example.)

- (a) σ symmetric $\Rightarrow \sigma'$ symmetric
- (b) σ non-degenerate $\Rightarrow \sigma'$ non-degenerate
- (c) σ degenerate $\Rightarrow \sigma'$ degenerate
- (d) σ positive definite $\Rightarrow \sigma'$ positive definite
- (e) All restrictions σ' for all possible subspaces U are non-degenerate $\Rightarrow \sigma$ either positive definite or negative definite.

Exercise T2 (Matrices over \mathbb{F}_2)

(a) Consider the following three matrices $A_i \in \mathbb{F}_2^{(3,3)}$ over the two-element field \mathbb{F}_2 .

$$A_1 = \left(\begin{array}{rrr} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{array}\right) \quad A_2 = \left(\begin{array}{rrr} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{array}\right) \quad A_3 = \left(\begin{array}{rrr} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{array}\right)$$

- (i) Determine the characteristic polynomials p_{A_i} for i = 1, 2, 3 and decompose them into irreducible factors in $\mathbb{F}_2[X]$. List for each of them all eigenvalues together with their geometric multiplicities.
- (ii) Which of the matrices A₁, A₂, A₃ are similar to upper triangle matrices over F₂? Which of them are similar to a Jordan normal form matrix over F₂? Which of them are diagonalisable over F₂?
- (b) (i) Provide precisely one representative for every similarity class of matrices in $\mathbb{F}_2^{(2,2)}$ whose characteristic polynomials split into linear factors.

Hint: consider possible Jordan normal forms.

(ii) Which degree 2 polynomial is irreducible in F₂[X]?
Which matrices in F₂^(2,2) give rise to this characteristic polynomial? Use this to extend the list from (i) to provide precisely one representative for every similarity class of matrices in F₂^(2,2). Hint: a degree 2 polynomial in F₂[X] is irreducible iff it has no zeroes over F₂.

Exercise T3 (Polynomials of linear maps)

Let *V* be a unitary vector space, $\varphi, \psi : V \to V$ endomorphisms of *V*, and $p, q \in \mathbb{C}[X]$ polynomials. Which of the following statements are always true? Either give a proof or find a counterexample.

- (a) If $\varphi \circ \psi = \psi \circ \varphi$, then $p(\varphi) \circ q(\psi) = q(\psi) \circ p(\varphi)$.
- (b) Every φ -invariant subspace *U* of *V* is also $p(\varphi)$ -invariant.
- (c) If φ is invertible, then $p(\varphi)$ is also invertible.
- (d) If φ is diagonalisable, then $p(\varphi)$ is also diagonalisable.
- (e) If φ is unitary, then $p(\varphi)$ is also unitary.
- (f) If φ is self-adjoint, then $p(\varphi)$ is also self-adjoint.