Linear Algebra II Tutorial Sheet no. 13

Prof. Dr. Otto
Dr. Le Roux
Dr. Linshaw

July 4, 2011

Exercise T1 (Warm-up: Determinant revisited)
We consider the real vector space V of symmetric, 2×2 real matrices.
(a) Prove that det: $V \rightarrow \mathbb{R}$ is a a quadratic form.
(b) Determine the matrix of the associated bilinear form with respect to the basis

$$
\mathscr{B}=\left(B_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad B_{2}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right), \quad B_{3}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right) .
$$

(c) Determine the principal axes and sketch the sets

$$
\{\mathbf{v} \in V \mid \operatorname{det} \mathbf{v}=1\}, \quad\{\mathbf{v} \in V \mid \operatorname{det} \mathbf{v}=-1\} .
$$

(as subsets of \mathbb{R}^{3}, when every matrix is identified with its coordinates w.r.t. the basis \mathscr{B}).
Exercise T2 (A quadric up to rotation/translation)
Consider the quadratic \mathbb{X} given by $3 x^{2}+3 y^{2}-2 x y+20 x-12 y+40=0$. Our goal is to find the principal axes and describe the graph of \mathbb{X}.
(a) Regarding the quadratic part of the above equation as a quadratic form, diagonalise the associated symmetric bilinear form to obtain a basis for which the cross term $x y$ vanishes.
(b) Working in this new basis, eliminate the linear terms by a translation.
(c) Describe \mathbb{X}.

Exercise T3 (Slicing a quadric)
Consider the quadric $\mathbb{X}_{\lambda, \mu}$ in \mathbb{R}^{3} defined by

$$
\mathbb{X}_{\lambda, \mu}:=\left\{\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: \lambda\left(x_{1}^{2}+x_{2}^{2}\right)+\mu x_{3}^{2}=1\right\}
$$

where λ and μ are real parameters.
(a) Determine the intersection of every $\mathbb{X}_{\lambda, \mu}$ with the plane defined by $x_{3}=c \in \mathbb{R}$.
(b) Prove that $\mathbb{X}_{\lambda, \mu}$ can be obtained by rotating the set

$$
\mathbb{X}_{\lambda, \mu}^{\prime}:=\left\{\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: x_{1}=0, \lambda x_{2}^{2}+\mu x_{3}^{2}=1\right\}
$$

about the x_{3}-axis.
(c) For each pair of values

	λ	μ
1.	-1	1
2.	1	-1
3.	2	1

sketch $\mathbb{X}_{\lambda, \mu}$ and $\mathbb{X}_{\lambda, \mu}^{\prime}$.

