Linear Algebra II Tutorial Sheet no. 13

TECHNISCHE UNIVERSITÄT DARMSTADT

Summer term 2011

July 4, 2011

Prof. Dr. Otto Dr. Le Roux Dr. Linshaw

Exercise T1 (Warm-up: Determinant revisited)

We consider the real vector space *V* of symmetric, 2×2 real matrices.

- (a) Prove that det : $V \to \mathbb{R}$ is a a quadratic form.
- (b) Determine the matrix of the associated bilinear form with respect to the basis

$$\mathscr{B} = \begin{pmatrix} B_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad B_2 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \quad B_3 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \end{pmatrix}.$$

(c) Determine the principal axes and sketch the sets

 $\{\mathbf{v} \in V \mid \det \mathbf{v} = 1\}, \quad \{\mathbf{v} \in V \mid \det \mathbf{v} = -1\}.$

(as subsets of \mathbb{R}^3 , when every matrix is identified with its coordinates w.r.t. the basis \mathscr{B}).

Exercise T2 (A quadric up to rotation/translation)

Consider the quadratic X given by $3x^2 + 3y^2 - 2xy + 20x - 12y + 40 = 0$. Our goal is to find the principal axes and describe the graph of X.

- (a) Regarding the quadratic part of the above equation as a quadratic form, diagonalise the associated symmetric bilinear form to obtain a basis for which the cross term xy vanishes.
- (b) Working in this new basis, eliminate the linear terms by a translation.
- (c) Describe X.

Exercise T3 (Slicing a quadric)

Consider the quadric $\mathbb{X}_{\lambda,\mu}$ in \mathbb{R}^3 defined by

$$\mathbb{X}_{\lambda,\mu} := \{ \mathbf{x} = (x_1, x_2, x_3) \in \mathbb{R}^3 : \lambda(x_1^2 + x_2^2) + \mu x_3^2 = 1 \},\$$

where λ and μ are real parameters.

- (a) Determine the intersection of every $\mathbb{X}_{\lambda,\mu}$ with the plane defined by $x_3 = c \in \mathbb{R}$.
- (b) Prove that $\mathbb{X}_{\lambda,\mu}$ can be obtained by rotating the set

$$\mathbb{X}'_{\lambda,\mu} := \{ \mathbf{x} = (x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 = 0, \ \lambda x_2^2 + \mu x_3^2 = 1 \}$$

about the x_3 -axis.

(c) For each pair of values

	λ	μ	
1.	-1	1	
2.	1	-1	,
3.	2	1	

sketch $\mathbb{X}_{\lambda,\mu}$ and $\mathbb{X}'_{\lambda,\mu}$.