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Exercise T1 (Warm-up: Determinant revisited)
We consider the real vector space V of symmetric, 2× 2 real matrices.

(a) Prove that det : V → R is a a quadratic form.

(b) Determine the matrix of the associated bilinear form with respect to the basis
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1 0
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.

(c) Determine the principal axes and sketch the sets

{v ∈ V | detv= 1}, {v ∈ V | detv=−1}.

(as subsets of R3, when every matrix is identified with its coordinates w.r.t. the basisB).

Exercise T2 (A quadric up to rotation/translation)
Consider the quadratic X given by 3x2 + 3y2 − 2x y + 20x − 12y + 40 = 0. Our goal is to find the principal axes and

describe the graph of X.

(a) Regarding the quadratic part of the above equation as a quadratic form, diagonalise the associated symmetric
bilinear form to obtain a basis for which the cross term x y vanishes.

(b) Working in this new basis, eliminate the linear terms by a translation.

(c) Describe X.

Exercise T3 (Slicing a quadric)
Consider the quadric Xλ,µ in R3 defined by

Xλ,µ := {x= (x1, x2, x3) ∈ R3 : λ(x2
1 + x2

2) +µx2
3 = 1},

where λ and µ are real parameters.

(a) Determine the intersection of every Xλ,µ with the plane defined by x3 = c ∈ R.

(b) Prove that Xλ,µ can be obtained by rotating the set

X′λ,µ := {x= (x1, x2, x3) ∈ R3 : x1 = 0, λx2
2 +µx2

3 = 1}

about the x3-axis.

(c) For each pair of values

λ µ

1. −1 1
2. 1 −1
3. 2 1

,

sketch Xλ,µ and X′λ,µ.
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