Linear Algebra II Tutorial Sheet no. 12

Summer term 2011

Prof. Dr. Otto
Dr. Le Roux
Dr. Linshaw

June 27, 2011

Exercise T1 (Warm-up)

Consider a symmetric bilinear form σ in a finite-dimensional euclidean vector space ($V,\langle\cdot, \cdot\rangle$). Suppose σ has a diagonal representation w.r.t. basis B.
(a) Show that if B consists of pairwise orthogonal basis vectors, then, for every c, the subset

$$
\mathbb{X}_{c}:=\{\mathbf{v} \in V: \sigma(\mathbf{v}, \mathbf{v})=c\}
$$

is invariant under reflections in the hyperplanes perpendicular to the basis vectors, $\operatorname{span}\left(\mathbf{b}_{i}\right)^{\perp}$.
(b) Which property of B or σ guarantees that the sets \mathbb{X}_{c} also have non-trivial rotational symmetries?

Exercise T2 (Antisymmetric/skew-symmetric bilinear forms)
A bilinear form $\sigma: V \times V \rightarrow \mathbb{R}$ is called antisymmetric if $\sigma(\mathbf{v}, \mathbf{w})=-\sigma(\mathbf{w}, \mathbf{v})$ for all $\mathbf{v}, \mathbf{w} \in V$.
Prove that every bilinear form is the sum of a symmetric bilinear form and an antisymmetric bilinear form, and that decomposition is unique.

Hint (for uniqueness): think of direct sums.
Exercise T3 (Preservation of bilinear forms)
Let σ be a symmetric bilinear form on \mathbb{R}^{n}, represented by $A \in \mathbb{R}^{(n, n)}$ w.r.t. the standard basis. The function $Q: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined by $Q(\mathbf{x})=\sigma(\mathbf{x}, \mathbf{x})$ is called the associated quadratic form of σ.

We say that an endomorphism φ of \mathbb{R}^{n} preserves the bilinear from σ if $\sigma(\varphi(\mathbf{x}), \varphi(\mathbf{y}))=\sigma(\mathbf{x}, \mathbf{y})$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$. Analogously, φ preserves the associated quadratic form Q if $Q(\varphi(\mathbf{x}))=Q(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^{n}$.

Show that for an endomorphism φ represented by the matrix C w.r.t. the standard basis, the following are equivalent:
(a) φ preserves Q;
(b) φ preserves σ;
(c) $C^{t} A C=A$.

Exercise T4 (Diagonalisability of bilinear forms)
Let the bilinear forms σ_{1} and σ_{2} on \mathbb{R}^{3} be defined by the matrices

$$
A_{1}=\left(\begin{array}{lll}
0 & 0 & 2 \\
0 & 3 & 0 \\
2 & 0 & 0
\end{array}\right), \quad A_{2}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

with respect to the standard basis of \mathbb{R}^{3}.
(a) Is σ_{1} or σ_{2} degenerate?
(b) Determine for $i=1,2$ an orthonormal basis of \mathbb{R}^{3} with respect to which the matrix of σ_{i} is diagonal.
(c) What are the signatures of σ_{1} and σ_{2} ? Are they positive definite? Is there any plane of symmetry of the "unit surfaces" or any invariance under translation?

