Linear Algebra II Tutorial Sheet no. 11

TECHNISCHE UNIVERSITÄT DARMSTADT

Summer term 2011

Prof. Dr. Otto
Dr. Le Roux
Dr. Linshaw

June 20, 2011

Exercise T1 (Warmup: Skew-hermitian and skew-symmetric matrices)
A matrix $A \in \mathbb{C}^{(n, n)}$ is called skew-hermitian if $A^{+}=-A$. Similarly, in the real case, $A \in \mathbb{R}^{(n, n)}$ is called skew-symmetric if $A=-A^{t}$.
(a) Show that any skew-hermitian or skew-symmetric matrix is normal.
(b) Conclude that for any skew-hermitian matrix A, there exists a unitary matrix U such that $U A U^{-1}=D$, where D is diagonal.
(c) Let $A \in \mathbb{C}^{(n, n)}$ be skew-hermitian. What can you say about the eigenvalues of A ?

Exercise T2 (Self-adjoint and normal endomorphisms)
Let V be a finite dimensional euclidean or unitary space and φ an endomorphism of V. Prove the following.
(a) If V is euclidean, then

$$
\varphi \text { is self-adjoint } \Leftrightarrow V \text { has an orthonormal basis consisting of eigenvectors of } \varphi \text {. }
$$

(b) If V is unitary, which one of the implications from (a) does not hold?
(c) If V is unitary, then

$$
\varphi \text { is normal } \Leftrightarrow V \text { has an orthonormal basis consisting of eigenvectors of } \varphi \text {. }
$$

Exercise T3 (Orthogonal diagonalisability)

Find an orthogonal matrix C such that the matrix

$$
A=\left(\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right)
$$

is transformed into a diagonal matrix by $C^{-1} A C=C^{t} A C$. Which property of A guarantees that you can find such a C ?
[Hint: The charactaristic polynomial is $p_{A}=(X-1)^{2}(X-4)$]

