Linear Algebra II Tutorial Sheet no. 10

Summer term 2011

Prof. Dr. Otto
Dr. Le Roux
Dr. Linshaw

June 13, 2011

Exercise T1 (Warm-up)

Decide whether the following statements are true or false.
(a) Every orthogonal matrix is regular.
(b) Every regular matrix in $\mathbb{R}^{(n, n)}$ is similar to an orthogonal matrix.
(c) $O(n) \subseteq \mathbb{R}^{(n, n)}$ forms a linear subspace.
(d) Orthogonal projections are orthogonal maps.
(e) Permutations matrices are orthogonal.
(f) For the orthogonal projections onto a subspace U and onto its orthogonal complement U^{\perp} in a finite-dimensional euclidean/unitary space: $\pi_{U^{\perp}}=\mathrm{id}_{V}-\pi_{U}$.
(g) All matrix representations of orthogonal projections of \mathbb{R}^{n} onto k-dimensional subspaces of the euclidean space \mathbb{R}^{n} are similar.
(h) All matrix representations of projections of \mathbb{R}^{n} onto k-dimensional subspaces of \mathbb{R}^{n} are similar via an orthogonal transformation matrix.

Exercise T2 (Self-adjoint maps and orthogonal projections)

Let $(V,\langle\rangle$,$) be a finite dimensional euclidean or unitary vector space. An endomorphism \pi: V \rightarrow V$ is called self-adjoint if $\langle\pi(\mathbf{v}), \mathbf{w}\rangle=\langle\mathbf{v}, \pi(\mathbf{w})\rangle$ for all $\mathbf{v}, \mathbf{w} \in V$ (cf. Definition 2.4.1 in the notes). Suppose that π is a projection, i.e., $\pi \circ \pi=\pi$. Show that π is self-adjoint if and only if π is an orthogonal projection.

Exercise T3 (Orthogonal maps)

(a) Show that an orthogonal map in \mathbb{R}^{2} is either the identity, the reflection in the origin, a reflection in a line or a rotation (the first two being special cases of the fourth). Conclude that every orthogonal map in \mathbb{R}^{2} is the composition of at most two reflections in a line.
(b) Show that an orthogonal map in \mathbb{R}^{3} is either the identity, a reflection in a plane, a reflection in a line, the reflection in the origin, a rotation about an axis or a rotation about an axis followed by a reflection in the plane orthogonal to the axis (the first four being special cases of the last two). Conclude that every orthogonal map in \mathbb{R}^{3} is the composition of at most three reflections in a plane.
Extra: how about orthogonal maps in \mathbb{R}^{n} ?
[Hint: Take a look at Corollary 2.3.18 in the notes.]
Exercise T4 (Orthogonal maps)
Set

$$
A:=\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right) .
$$

Determine an orthogonal matrix P, for which $P^{t} A P$ is diagonal and compute $P^{t} A P$.

