Linear Algebra II Tutorial Sheet no. 9

Summer term 2011

Prof. Dr. Otto
Dr. Le Roux
Dr. Linshaw

June 6, 2011

Exercise T1 (Warm-up: Normal matrices)
Let $A \in \mathbb{C}^{(n, n)}$ be normal, that is, $A A^{+}=A^{+} A$. Show that if \mathbf{v} is an eigenvector of A with eigenvalue λ, then it is also an eigenvector of A^{+}with eigenvalue $\bar{\lambda}$.

Hint: consider $\left\langle A^{+} \mathbf{v}-\bar{\lambda} \mathbf{v}, A^{+} \mathbf{v}-\bar{\lambda} \mathbf{v}\right\rangle$.
Exercise T2 (Matrix groups)
(a) Show that the special orthogonal group $S O(n)$ is the subgroup of $O(n)$ consisting of those matrices that represent orientation preserving orthogonal maps in \mathbb{R}^{n} w.r.t. the standard orthonormal basis. (Compare Exercise 2.3.11 on page 74 of the notes.)
(b) Prove that $U(1)$ and $S O(2)$ are isomorphic as groups.
[Hint: use that $\mathbb{C} \backslash\{0\}$ is isomorphic to a certain subgroup of $\mathrm{GL}_{2}(\mathbb{R})$.]
Exercise T3 (Orientation preserving orthogonal maps)
(a) Let $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be an orientation preserving orthogonal map. Show that, for any set of vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n} \in \mathbb{R}^{n}$, we have

$$
\operatorname{det}\left(\varphi\left(\mathbf{a}_{1}\right), \ldots, \varphi\left(\mathbf{a}_{n}\right)\right)=\operatorname{det}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right)
$$

(b) Show that any orientation preserving orthogonal map $\varphi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ preserves the cross product.

Hint: recall from Exercise (T15.2) from Linear Algebra I that the cross product of two vectors $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{3}$ is the unique vector $\mathbf{a} \times \mathbf{b} \in \mathbb{R}^{3}$ such that $\langle\mathbf{a} \times \mathbf{b}, \mathbf{x}\rangle=\operatorname{det}(\mathbf{a}, \mathbf{b}, \mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^{3}$.
(c) Let $\varphi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the orientation preserving orthogonal map with $\varphi(2,1,2)=(0,3,0)$ and $\varphi(0,-3,0)=$ $(2,-1,-2)$. Determine the matrix representation of φ with respect to the standard basis, and interpret φ geometrically.
Hint: use (b).

Exercise T4 (Orthogonal maps)

(a) Show that an orthogonal map in \mathbb{R}^{2} is either the identity, the reflection in the origin, a reflection in a line or a rotation (the first two being special cases of the fourth). Conclude that every orthogonal map in \mathbb{R}^{2} is the composition of at most two reflections in a line.
(b) Show that an orthogonal map in \mathbb{R}^{3} is either the identity, a reflection in a plane, a reflection in a line, the reflection in the origin, a rotation about an axis or a rotation about an axis followed by a reflection in the plane orthogonal to the axis (the first four being special cases of the last two). Conclude that every orthogonal map in \mathbb{R}^{3} is the composition of at most three reflections in a plane.
Extra: how about orthogonal maps in \mathbb{R}^{n} ?
[Hint: Take a look at Corollary 2.3.18 in the notes.]

