Linear Algebra II Tutorial Sheet no. 9

TECHNISCHE UNIVERSITÄT DARMSTADT

Summer term 2011 June 6, 2011

Prof. Dr. Otto Dr. Le Roux Dr. Linshaw

Exercise T1 (Warm-up: Normal matrices)

Let $A \in \mathbb{C}^{(n,n)}$ be normal, that is, $AA^+ = A^+A$. Show that if **v** is an eigenvector of *A* with eigenvalue λ , then it is also an eigenvector of A^+ with eigenvalue $\overline{\lambda}$.

Hint: consider $\langle A^+ \mathbf{v} - \overline{\lambda} \mathbf{v}, A^+ \mathbf{v} - \overline{\lambda} \mathbf{v} \rangle$.

Exercise T2 (Matrix groups)

(a) Show that the special orthogonal group SO(n) is the subgroup of O(n) consisting of those matrices that represent orientation preserving orthogonal maps in \mathbb{R}^n w.r.t. the standard orthonormal basis. (Compare Exercise 2.3.11 on page 74 of the notes.)

(b) Prove that U(1) and SO(2) are isomorphic as groups.
[Hint: use that C\{0} is isomorphic to a certain subgroup of GL₂(ℝ).]

Exercise T3 (Orientation preserving orthogonal maps)

(a) Let $\varphi : \mathbb{R}^n \to \mathbb{R}^n$ be an orientation preserving orthogonal map. Show that, for any set of vectors $\mathbf{a}_1, \dots, \mathbf{a}_n \in \mathbb{R}^n$, we have

$$\det(\varphi(\mathbf{a}_1),\ldots,\varphi(\mathbf{a}_n)) = \det(\mathbf{a}_1,\ldots,\mathbf{a}_n).$$

- (b) Show that any orientation preserving orthogonal map φ : ℝ³ → ℝ³ preserves the cross product. *Hint:* recall from Exercise (T15.2) from Linear Algebra I that the cross product of two vectors a, b ∈ ℝ³ is the unique vector a × b ∈ ℝ³ such that ⟨a × b, x⟩ = det(a, b, x) for all x ∈ ℝ³.
- (c) Let φ : ℝ³ → ℝ³ be the orientation preserving orthogonal map with φ(2,1,2) = (0,3,0) and φ(0,-3,0) = (2,-1,-2). Determine the matrix representation of φ with respect to the standard basis, and interpret φ geometrically.
 Hint: use (b).

Exercise T4 (Orthogonal maps)

- (a) Show that an orthogonal map in \mathbb{R}^2 is either the identity, the reflection in the origin, a reflection in a line or a rotation (the first two being special cases of the fourth). Conclude that every orthogonal map in \mathbb{R}^2 is the composition of at most two reflections in a line.
- (b) Show that an orthogonal map in ℝ³ is either the identity, a reflection in a plane, a reflection in a line, the reflection in the origin, a rotation about an axis or a rotation about an axis followed by a reflection in the plane orthogonal to the axis (the first four being special cases of the last two). Conclude that every orthogonal map in ℝ³ is the composition of at most three reflections in a plane. Extra: how about orthogonal maps in ℝⁿ?

[Hint: Take a look at Corollary 2.3.18 in the notes.]