Linear Algebra II Tutorial Sheet no. 8

TECHNISCHE UNIVERSITÄT DARMSTADT

Summer term 2011 May 30, 2011

Prof. Dr. Otto Dr. Le Roux Dr. Linshaw

Exercise T1 (Warm-up)

Let *V* be a vector space with basis $B = (b_1, \ldots, b_n)$

- (a) Give a definition of non-degeneracy for bilinear forms on V, and show that
 - i. σ is non-degenerate iff $\llbracket \sigma \rrbracket^B$ is regular,
 - ii. σ is symmetric/hermitian iff $\llbracket \sigma \rrbracket^B$ is symmetric/self-adjoint.
- (b) Check for consistency that the change-of-basis transformation for matrices for bilinear forms are such that regularity, symmetry, self-adjointness are preserved.
- (c) Let \approx be the "similarity" of real/complex matrices as representations of the same (semi-)bilinear form. Which real/complex $n \times n$ matrices exactly are \approx equivalent to the *n*-dimensional unit matrix?

Exercise T2 (Orthogonal complements in \mathbb{R}^3)

For each of the following subspaces U in \mathbb{R}^3 , find an orthonormal basis for U, complete this to an orthonormal basis for \mathbb{R}^3 , and then give an orthonormal basis for U^{\perp} .

- (a) $U = \{(x, y, z) \mid x + 2y + 3z = 0\}.$
- (b) $U = \{(x, y, z) \mid x + y + z = 0 \text{ and } x y + z = 0\}.$

Exercise T3 (An orthonormal basis)

Let $V := Pol_2(\mathbb{R})$ be the \mathbb{R} -vector space of all polynomial functions over \mathbb{R} of degree at most 2. On this vector space

$$\langle p_1, p_2 \rangle := \int_{-1}^{1} p_1(x) p_2(x) dx$$

defines a scalar product, turning $(V, \langle ., . \rangle)$ into a euclidean space (see Section 2.2 on page 62 of the notes).

Determine an orthonormal basis of *V*.

Exercise T4 (Dual spaces)

Recall that for any \mathbb{F} -vector space V, the set $\text{Hom}(V, \mathbb{F})$ of linear maps $V \to \mathbb{F}$ has again the structure of a vector space, with vector addition and scalar multiplication being defined pointwise, turning it into what is called the dual space of V (see Section 3.2.2 on page 87 of the notes of Linear Algebra I).

If *V* is a euclidean vector space, we have a map $\varphi_V : V \to \text{Hom}(V, \mathbb{R})$ with $\varphi_V(\mathbf{w}) \in \text{Hom}(V, \mathbb{R})$ for any $\mathbf{w} \in V$ defined by

$$\varphi_V(\mathbf{w})(\mathbf{v}) = \langle \mathbf{w}, \mathbf{v} \rangle$$
, for all $\mathbf{v} \in V$.

The aim of this exercise is to show that φ_V is an isomorphism if *V* is finite dimensional, but not necessarily if *V* is infinite dimensional.

- (a) Show that φ_V is an injective linear map.
- (b) Show that φ_V is an isomorphism if *V* is finite dimensional.

From now on, we consider the sequence space $\mathscr{F}(\mathbb{N},\mathbb{R})$ and define

 $V = \{ f \in \mathscr{F}(\mathbb{N}, \mathbb{R}) : f(n) = 0 \text{ for all but finitely many } n \}.$

- (c) Show that $\langle f,g \rangle = \sum_{n \in \mathbb{N}} f(n)g(n)$ defines a scalar product on the subspace *V* of $\mathscr{F}(\mathbb{N},\mathbb{R})$, turning $(V, \langle .,. \rangle)$ into a euclidean space. Check that $\langle f,g \rangle$ is defined if $f \in \mathscr{F}(\mathbb{N},\mathbb{R})$ and $g \in V$, but not necessarily if *f* and *g* both belong to $\mathscr{F}(\mathbb{N},\mathbb{R})$.
- (d) Show that the map $\psi : \mathscr{F}(\mathbb{N}, \mathbb{R}) \to \text{Hom}(V, \mathbb{R})$ with $\psi(f) \in \text{Hom}(V, \mathbb{R})$ for any $f \in \mathscr{F}(\mathbb{N}, \mathbb{R})$ defined by $\psi(f)(g) = \langle f, g \rangle$ is an isomorphism of vector spaces. Conclude from this that φ_V , which is ψ restricted to V, is not.

Hint: use that the functions $b_n \in V$ $(n \in \mathbb{N})$ defined by $b_n(i) = 1$ if n = i and 0 otherwise, form an orthonormal basis for *V*.