Linear Algebra II Tutorial Sheet no. 8

Summer term 2011

Prof. Dr. Otto
Dr. Le Roux
Dr. Linshaw

Exercise T1 (Warm-up)

Let V be a vector space with basis $B=\left(b_{1}, \ldots, b_{n}\right)$
(a) Give a definition of non-degeneracy for bilinear forms on V, and show that
i. σ is non-degenerate iff $\llbracket \sigma \rrbracket^{B}$ is regular,
ii. σ is symmetric/hermitian iff $\llbracket \sigma \rrbracket^{B}$ is symmetric/self-adjoint.
(b) Check for consistency that the change-of-basis transformation for matrices for bilinear forms are such that regularity, symmetry, self-adjointness are preserved.
(c) Let \approx be the "similarity" of real/complex matrices as representations of the same (semi-)bilinear form. Which real/complex $n \times n$ matrices exactly are \approx equivalent to the n-dimensional unit matrix?

Exercise T2 (Orthogonal complements in \mathbb{R}^{3})

For each of the following subspaces U in \mathbb{R}^{3}, find an orthonormal basis for U, complete this to an orthonormal basis for \mathbb{R}^{3}, and then give an orthonormal basis for U^{\perp}.
(a) $U=\{(x, y, z) \mid x+2 y+3 z=0\}$.
(b) $U=\{(x, y, z) \mid x+y+z=0$ and $x-y+z=0\}$.

Exercise T3 (An orthonormal basis)
Let $V:=\operatorname{Pol}_{2}(\mathbb{R})$ be the \mathbb{R}-vector space of all polynomial functions over \mathbb{R} of degree at most 2 . On this vector space

$$
\left\langle p_{1}, p_{2}\right\rangle:=\int_{-1}^{1} p_{1}(x) p_{2}(x) \mathrm{d} x
$$

defines a scalar product, turning ($V,\langle.,$.$\rangle) into a euclidean space (see Section 2.2$ on page 62 of the notes).
Determine an orthonormal basis of V.

Exercise T4 (Dual spaces)

Recall that for any \mathbb{F}-vector space V, the set $\operatorname{Hom}(V, \mathbb{F})$ of linear maps $V \rightarrow \mathbb{F}$ has again the structure of a vector space, with vector addition and scalar multiplication being defined pointwise, turning it into what is called the dual space of V (see Section 3.2.2 on page 87 of the notes of Linear Algebra I).

If V is a euclidean vector space, we have a map $\varphi_{V}: V \rightarrow \operatorname{Hom}(V, \mathbb{R})$ with $\varphi_{V}(\mathbf{w}) \in \operatorname{Hom}(V, \mathbb{R})$ for any $\mathbf{w} \in V$ defined by

$$
\varphi_{V}(\mathbf{w})(\mathbf{v})=\langle\mathbf{w}, \mathbf{v}\rangle, \text { for all } \mathbf{v} \in V
$$

The aim of this exercise is to show that φ_{V} is an isomorphism if V is finite dimensional, but not necessarily if V is infinite dimensional.
(a) Show that φ_{V} is an injective linear map.
(b) Show that φ_{V} is an isomorphism if V is finite dimensional.

From now on, we consider the sequence space $\mathscr{F}(\mathbb{N}, \mathbb{R})$ and define

$$
V=\{f \in \mathscr{F}(\mathbb{N}, \mathbb{R}): f(n)=0 \text { for all but finitely many } n\}
$$

(c) Show that $\langle f, g\rangle=\sum_{n \in \mathbb{N}} f(n) g(n)$ defines a scalar product on the subspace V of $\mathscr{F}(\mathbb{N}, \mathbb{R})$, turning $(V,\langle.,\rangle$.$) into a$ euclidean space. Check that $\langle f, g\rangle$ is defined if $f \in \mathscr{F}(\mathbb{N}, \mathbb{R})$ and $g \in V$, but not necessarily if f and g both belong to $\mathscr{F}(\mathbb{N}, \mathbb{R})$.
(d) Show that the map $\psi: \mathscr{F}(\mathbb{N}, \mathbb{R}) \rightarrow \operatorname{Hom}(V, \mathbb{R})$ with $\psi(f) \in \operatorname{Hom}(V, \mathbb{R})$ for any $f \in \mathscr{F}(\mathbb{N}, \mathbb{R})$ defined by $\psi(f)(g)=$ $\langle f, g\rangle$ is an isomorphism of vector spaces. Conclude from this that φ_{V}, which is ψ restricted to V, is not.

Hint: use that the functions $b_{n} \in V(n \in \mathbb{N})$ defined by $b_{n}(i)=1$ if $n=i$ and 0 otherwise, form an orthonormal basis for V.

