Linear Algebra II Tutorial Sheet no. 7

TECHNISCHE UNIVERSITÄT DARMSTADT

Prof. Dr. Otto Dr. Le Roux Dr. Linshaw Summer term 2011 May 23, 2011

Exercise T1 (Warm up: bilinear form - examples)

Each of the following pictures shows the unit surface $\{\mathbf{v} \in \mathbb{R}^3 : \sigma(\mathbf{v}, \mathbf{v}) = 1\}$ for some bilinear form σ . Which of these forms is positive definite?

Which are non-degenerate?

For each of these bilinear forms, give an example of a matrix that represents that form.

Exercise T2 (Basis transformations for (semi-)bilinear forms) Compare Exercise 2.1.3 on page 58 of the notes.

- (a) Let σ be a bilinear form on an *n*-dimensional \mathbb{R} -vector space *V*, represented by the matrix *A* with respect to the basis $B = (\mathbf{b}_1, \dots, \mathbf{b}_n)$. If $B' = (\mathbf{b}'_1, \dots, \mathbf{b}'_n)$ is another basis for *V*, find an expression for the matrix $A' = [\![\sigma]\!]^{B'}$ in terms of *A*, the basis transformation matrices $C = [\![id_V]\!]^{B'}_{B'}$ and $C^{-1} = [\![id_V]\!]^{B'}_{B}$ as well as their transposes as appropriate.
- (b) Similarly for a semi-bilinear form σ of an *n*-dimensional \mathbb{C} -vector space *V*: if σ is represented by *A* w.r.t. a basis *B*, what is its representation *A'* w.r.t. a basis *B'* in terms of *A*, the basis transformations matrices, as well as their adjoints?
- (c) Consider the following bilinear form $\sigma : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ on the vector space \mathbb{R}^2 :

$$\sigma(\binom{v_1}{v_2}, \binom{w_1}{w_2}) := 7v_1w_1 - 5v_1w_2 - 5v_2w_1 + 4v_2w_2.$$

What is its representation with respect to the standard basis? Then compute its representation with respect to the basis $(\mathbf{b}_1, \mathbf{b}_2) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ directly, as well as by using the formula obtained in part (a).

(d) Is the bilinear form σ in part (c) symmetric? Is it positive definite?

Exercise T3

Let $\mathscr{F}(\mathbb{N}, \mathbb{C})$ denote the set of sequences $\mathbf{a} = (a_0, a_1, a_2, ...)$ in \mathbb{C} .

- (a) Show that given **a**, **b** in $\mathscr{F}(\mathbb{N}, \mathbb{C})$ for which $\sum_{i=0}^{\infty} |a_i|^2$ and $\sum_{i=0}^{\infty} |b_i|^2$ are convergent, $\sum_{i=0}^{\infty} \bar{a}_i b_i$ is absolutely convergent.
- (b) Let $\mathscr{F}(\mathbb{N}, \mathbb{C})_2$ denote the set of sequences $\mathbf{a} \in \mathscr{F}(\mathbb{N}, \mathbb{C})$ for which $\sum_{i=0}^{\infty} |a_i|^2$ converges. Show that $\mathscr{F}(\mathbb{N}, \mathbb{C})_2$ forms a subspace of $\mathscr{F}(\mathbb{N}, \mathbb{C})$, and that the scalar product $\langle \mathbf{a}, \mathbf{b} \rangle = \sum_{i=0}^{\infty} \bar{a}_i b_i$ on $\mathscr{F}(\mathbb{N}, \mathbb{C})_2$ is unitary.
- (c) Show that the "generalised standard basis vectors" consisting of sequences with a single 1 and zeroes elsewhere form an infinite family of pairwise orthogonal unit vectors in $\mathscr{F}(\mathbb{N}, \mathbb{C})_2$, but they do not form a basis of $\mathscr{F}(\mathbb{N}, \mathbb{C})_2$.

(d) *** (Cf Exercise H10.3 on the Christmas sheet LA I) Does $\mathscr{F}(\mathbb{N},\mathbb{C})_2$ admit a countable basis?

Exercise T4

In \mathbb{R}^3 , let ρ be the rotation through an angle of $\frac{\pi}{4}$ about the vector (1, 1, 1). In this problem we will find the matrix representing ρ w.r.t. the standard basis of \mathbb{R}^3 .

- (a) Find an orthonormal basis $B = (\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3)$ of \mathbb{R}^3 such that \mathbf{b}_1 is a positive scalar multiple of (1, 1, 1) and $\llbracket \text{id} \rrbracket_S^B$ is an orthogonal matrix of determinant 1.
- (b) Write down the matrix representing ρ w.r.t. the basis *B*.
- (c) Express the matrix representing ρ using $[\![\rho]\!]_B^B$ and $[\![id]\!]_S^B$.