Linear Algebra II Tutorial Sheet no. 7

Summer term 2011

Prof. Dr. Otto
Dr. Le Roux
Dr. Linshaw

Exercise T1 (Warm up: bilinear form - examples)

Each of the following pictures shows the unit surface $\left\{\mathbf{v} \in \mathbb{R}^{3}: \sigma(\mathbf{v}, \mathbf{v})=1\right\}$ for some bilinear form σ.
Which of these forms is positive definite?
Which are non-degenerate?
For each of these bilinear forms, give an example of a matrix that represents that form.

Exercise T2 (Basis transformations for (semi-)bilinear forms)
Compare Exercise 2.1.3 on page 58 of the notes.
(a) Let σ be a bilinear form on an n-dimensional \mathbb{R}-vector space V, represented by the matrix A with respect to the basis $B=\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right)$. If $B^{\prime}=\left(\mathbf{b}_{1}^{\prime}, \ldots, \mathbf{b}_{n}^{\prime}\right)$ is another basis for V, find an expression for the matrix $A^{\prime}=\llbracket \sigma \rrbracket^{B^{\prime}}$ in terms of A, the basis transformation matrices $C=\llbracket \operatorname{id}_{V} \rrbracket_{B^{\prime}}^{B}$ and $C^{-1}=\llbracket \operatorname{id}_{V} \rrbracket_{B}^{B^{\prime}}$ as well as their transposes as appropriate.
(b) Similarly for a semi-bilinear form σ of an n-dimensional \mathbb{C}-vector space V : if σ is represented by A w.r.t. a basis B, what is its representation A^{\prime} w.r.t. a basis B^{\prime} in terms of A, the basis transformations matrices, as well as their adjoints?
(c) Consider the following bilinear form $\sigma: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ on the vector space \mathbb{R}^{2} :

$$
\sigma\left(\binom{v_{1}}{v_{2}},\binom{w_{1}}{w_{2}}\right):=7 v_{1} w_{1}-5 v_{1} w_{2}-5 v_{2} w_{1}+4 v_{2} w_{2} .
$$

What is its representation with respect to the standard basis? Then compute its representation with respect to the basis $\left(\mathbf{b}_{1}, \mathbf{b}_{2}\right)=\left(\binom{1}{1},\binom{1}{2}\right)$ directly, as well as by using the formula obtained in part (a).
(d) Is the bilinear form σ in part (c) symmetric? Is it positive definite?

Exercise T3

Let $\mathscr{F}(\mathbb{N}, \mathbb{C})$ denote the set of sequences $\mathbf{a}=\left(a_{0}, a_{1}, a_{2}, \ldots\right)$ in \mathbb{C}.
(a) Show that given \mathbf{a}, \mathbf{b} in $\mathscr{F}(\mathbb{N}, \mathbb{C})$ for which $\sum_{i=0}^{\infty}\left|a_{i}\right|^{2}$ and $\sum_{i=0}^{\infty}\left|b_{i}\right|^{2}$ are convergent, $\sum_{i=0}^{\infty} \bar{a}_{i} b_{i}$ is absolutely convergent.
(b) Let $\mathscr{F}(\mathbb{N}, \mathbb{C})_{2}$ denote the set of sequences $\mathbf{a} \in \mathscr{F}(\mathbb{N}, \mathbb{C})$ for which $\sum_{i=0}^{\infty}\left|a_{i}\right|^{2}$ converges. Show that $\mathscr{F}(\mathbb{N}, \mathbb{C})_{2}$ forms a subspace of $\mathscr{F}(\mathbb{N}, \mathbb{C})$, and that the scalar product $\langle\mathbf{a}, \mathbf{b}\rangle=\sum_{i=0}^{\infty} \bar{a}_{i} b_{i}$ on $\mathscr{F}(\mathbb{N}, \mathbb{C})_{2}$ is unitary.
(c) Show that the "generalised standard basis vectors" consisting of sequences with a single 1 and zeroes elsewhere form an infinite family of pairwise orthogonal unit vectors in $\mathscr{F}(\mathbb{N}, \mathbb{C})_{2}$, but they do not form a basis of $\mathscr{F}(\mathbb{N}, \mathbb{C})_{2}$.
(d) *** (Cf Exercise H10.3 on the Christmas sheet LA I) Does $\mathscr{F}(\mathbb{N}, \mathbb{C})_{2}$ admit a countable basis?

Exercise T4

In \mathbb{R}^{3}, let ρ be the rotation through an angle of $\frac{\pi}{4}$ about the vector $(1,1,1)$. In this problem we will find the matrix representing ρ w.r.t. the standard basis of \mathbb{R}^{3}.
(a) Find an orthonormal basis $B=\left(\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right)$ of \mathbb{R}^{3} such that \mathbf{b}_{1} is a positive scalar multiple of $(1,1,1)$ and $\llbracket i d \rrbracket_{S}^{B}$ is an orthogonal matrix of determinant 1 .
(b) Write down the matrix representing ρ w.r.t. the basis B.
(c) Express the matrix representing ρ using $\llbracket \rho \rrbracket_{B}^{B}$ and $\llbracket \mathrm{id} \rrbracket_{S}^{B}$.

