Linear Algebra II Tutorial Sheet no. 6

TECHNISCHE UNIVERSITÄT DARMSTADT

May 16, 2011

Summer term 2011

Prof. Dr. Otto Dr. Le Roux Dr. Linshaw

Exercise T1 (Warm-up)

Let φ be an endomorphism of an n-dimensional \mathbb{F} -vector space *V*. Assume that φ is represented in the basis $B = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ by the matrix in block upper triangle form $M = \begin{pmatrix} A & D \\ 0 & C \end{pmatrix}$ where $A \in \mathbb{F}^{(k,k)}$, $C \in \mathbb{F}^{(n-k,n-k)}$, and $D \in \mathbb{F}^{(k,n-k)}$. Discuss what this implies about

- (a) the existence of invariant subspaces for φ .
- (b) the characteristic polynomial of φ .
- (c) the minimal polynomial of φ .

Consider examples of various situations of this kind.

Exercise T2 (Jordan normal form)

Write down matrices $A_i \in \mathbb{R}^{(4,4)}$ in Jordan normal form with the following properties:

- (a) A_1 has eigenvalues 2 and 4, with 2 having algebraic multiplicity 3 and geometric multiplicity 1.
- (b) A_2 has the eigenvalue 5 with algebraic multiplicity 4 and geometric multiplicity 3.
- (c) A_3 has the eigenvalue 7 with algebraic multiplicity 2 and geometric multiplicity 2 and the eigenvalue -3 with algebraic multiplicity 2 and geometric multiplicity 1.
- (d) The matrices A_4 and A_5 both have the eigenvalue 1 with algebraic multiplicity 4 and geometric multiplicity 2 and have no other eigenvalues. Furthermore, A_4 and A_5 are not similar.
- (e) Find two matrices that have the same characteristic and minimal polynomial, yet are not similar.

Exercise T3 (Jordan normal form and transpose)

- (a) Show that if the $A, B \in \mathbb{F}^{(n,n)}$ are similar, then so are A^t and B^t .
- (b) Let $A \in \mathbb{F}^{(n,n)}$ be a matrix in Jordan normal form. Show that A is similar to A^t . Deduce that over \mathbb{C} every square matrix is similar to its transpose.

Exercise T4 (Square roots)

Consider the set of all 4×4 complex matrices *A* with characteristic polynomial $p_A(x) = X^4$. We wish to determine exactly which such matrices admit a square root, that is, some matrix *S* such that $S^2 = A$.

- (a) Suppose that *A* and *B* are similar matrices. Show that *A* has a square root if and only if *B* has a square root. Conclude that it is enough to consider matrices that are in Jordan normal form.
- (b) Show that neither of the matrices

$$\begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \qquad \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

admits a square root.

(c) Show that the matrices

(0	1	0	0)	1	(0)	1	0	0)		(0	0	0	0)
0	0	0	0		0	0	0	0		0	0	0	0
0	0	0	1	,	0	0	0	0	,	0	0	0	0
0	0	0	0)		0)	0	0	0)		0	0	0	0)

admit square roots. Conclude that the set of 4×4 matrices with characteristic polynomial X^4 which admit a square root are precisely the ones which are similar to one of these Jordan forms.